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Chapter 1

Introduction and Previous Work

This thesis is the product of research conducted in the Department of Electromagnetism

and Matter Physics at the University of Granada, and EMI/EMC Department at Cas-

sidian, EADS-CASA, both in Spain. The research of this thesis focuses on developing

efficient and accurate time-domain electromagnetic computational techniques and their

application to real and practical engineering problems. A brief overview of the most

relevant methods, from this standpoint, is provided in this introductory chapter. In

addition, the reasons, alternatives, and capabilities of the specific technique chosen for

the current research are discussed, together with the current state of the art. A detail

description of the proposed technique is left for the subsequent chapters.

1.1 Overview of Computational Electromagnetics

Prior to the 1960s, the computation of electromagnetic (EM) fields was more confined to

analytical methods involving closed-form expressions or the solving-by-series approach.

However, with the advent of powerful computers and the development of sophisticated

algorithms, the art of computational electromagnetics (CEM), as in many other scientific

disciplines, have enabled exponential growth during the last five decades. Nevertheless,

the EM community has suffered without a unique and suitable method, able to solve all

real-world EM problems, such as radiation, scattering, coupling, or waveguiding. Fur-

thermore, the wide spectrum of engineering applications of CEM, design and modelling

of antenna and microwave devices, for RADAR or communication systems, electromag-

netic compatibility (EMC) studies, such as High Intensity Radiating Fields (HIRF),

cross-talk or lightning strikes against large structures, nanophotonic devices, medical

imaging, among other applications, makes the expertise of the user crucial in choosing

1
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3-D Computational Electromagnetics 

Full-Wave Methods 
Rigorous Methods 

High Frequency Methods 
Asymptotic Methods 

 

Current-Based 
 

Ray-Optics 
 

MoM-TD 
TWTD 

GO/GTD 
UTD 
 

Integral Equations 
 

Differential Equations 
 

TD 
 

PO/PTD 

FD 
 

MoM FDTD 
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TLM 
FVTD 
FEMTD 
DGTD 

TD 
 

FD 
 FEM 

FDFD 

Figure 1.1: Classification of purely numerical 3-D computational electromagnetic
methods.

the most appropriate method for a given problem. Hence, many different purely numer-

ical 3-D CEM techniques have been proposed, a conceptual classification of the most

relevant appears in figure 1.1.

Although many different numerical EM methods and classifications can be found in the

literature, we consider those of figure 1.1 the most relevant, which can be classified on

three different levels. At the highest level, we distinguish between asymptotic and full-

wave methods. The former permit numerical solutions with low computational cost in

the frequency domain (FD), converging to the physical ones as frequency increases. The

full-wave methods, however, rigorously solve Maxwell’s equations and the sources of dif-

ferences between numerical and physical solutions come from discretization and numeri-

cal errors, finding convergence when those errors tend to zero. The asymptotic methods

are based on simplified versions of Maxwell’s equations or EM scattering models, such

as Physical Optics (PO), which locally applies the equivalent principle, computing an

approximated solution regardless of other effects, or considered in a simplified way, as

in Physical Theory of Diffraction (PTD), or methods based on Ray-Optics, such as geo-

metrical optics (GO) extended to Geometric Theory of Diffraction (GTD) methods, and

Uniform Theory of Diffraction (UTD).

Full-wave methods can be classified in two ways: by the form (integral or differential) in

which Maxwell’s equations are solved, or according to the domain (frequency or time)
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where the equations are solved. One of the main advantages of methods based on the

integral form is that only the surfaces, interfaces of the materials where boundary condi-

tions must be fulfilled, e.g. as Method of Moments (MoM), and/or lines, e.g. Thin-Wire

Time-Domain (TWTD) method, have to be discretized, reducing the number of un-

knowns compared to volumetric methods. The accuracy of these methods, which make

use of the Green functions, is usually very high. The main drawbacks appear when deal-

ing with complex materials, composites, anisotropic, etc., where the applicability of the

method becomes complex, and also solving electrically large problems, since the condi-

tion number of the resulting linear system grows with the number of unknowns. Methods

based on differential forms include those based on fully structured meshes, such as Finite

Differences in Time or Frequency Domain (FDTD, FDFD), Finite Integral Technique

(FIT) or Transmission-Line-Matrix (TLM), or those based on unstructured meshes, such

as Finite Volume (FV), Finite Element (FE) or Discontinuous Galerkin (DG) methods.

The interest of FE and DG methods, compared to FV, is the possibility of combining

different orders of the basis functions, achieving faster convergence rates. The main ad-

vantage of volumetric methods is its versatility to deal with any EM problems, limited

only by the computational resources.

Typical frequency domain (FD) methods, such as MoM or FEM, are able to deal with

large structures with electrically small details, but become computationally inefficient

in the computation of wideband frequency responses, since one frequency needs one

complete simulation requiring the resolution of a linear system. Time domain (TD)

methods are an attractive alternative in such contexts. However, TD methods based

on structured meshes, such as FDTD, FIT and TLM, imposes significant constraints on

the geometrical discretization of complex objects, and on the accuracy and convergence

of the methods. To overcome these limitations, finite-element time-domain (FETD)

methods constitute useful alternatives. Nevertheless, classical FETD methods are still

computationally unaffordable for electrically large problems. In this work, alternatives

based on Discontinuous Galerkin Time Domain (DGTD) methods are proposed. DGTD

approaches have most of the advantages of FDTD, FIT and TLM, providing a spatially

explicit algorithm, simplicity, easy parallelization, and memory and computational cost,

growing only linearly with the number of elements. At the same time, DGTD schemes

retain most of the benefits of FEM: adaptability of the unstructured meshes and spatial

super-convergence.
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1.2 Discontinuous Galerkin Time Domain Survey

In this section, we give a brief overview of the most relevant finite element time do-

main methods (FETD). Then, a survey of the specific FETD technique, Discontinuous

Galerkin Time Domain method, discussed in this work, is presented.

1.2.1 Background

During the 1980s, advances in meshing technology together with the finite element

method (FEM) made it possible to solve Maxwell’s equations in complex geometries

by using an unstructured mesh based on tetrahedral tessellation. In this kind of mesh,

complex objects, having arbitrary curvatures and intricate details, are accurately dis-

cretized, which is a major change from cube-based space partitioning of the previous

methods, FDTD which appeared in 1966 [1], transmission-line-matrix (TLM) method in

1971 [2] and finite integral technique (FIT) proposed in 1977 [3]. This novel approach was

initially applied to two-dimension (2-D) or axisymmetric problems [4, 5, 6, 7] and later to

three-dimension (3-D) [8, 9, 10], but always to solve Maxwell’s equation in the frequency-

domain (FD). Thus, the application of FEM in FD has been to calculate S-parameters,

radiation patterns, RCS, and so on, and are ideal methods for low-frequency problems,

highly resonant structures, and eigenmode computations. However, time-domain (TD)

methods, as FDTD, FIT and TLM, are advantageous to deal with transient fields effects

and arbitrary time-signal excitation, such as lightning strikes, or broadband frequency

domain simulations, such as EMC coupling estimation or wideband antennas, or with

non-linear behavior of materials or components, where TD methods offer more direct

and efficient approach.

During the 1990s, a variety of time-domain FEM schemes were proposed [11], these

methods being based on both; Maxwell’s curl-curl equation (Helmholtz equation), and

the hyperbolic system of curl equations (Ampere’s and Faraday’s Laws). A detailed

review of the different approaches appears in Chapter 2, briefly summarized below.

A second-order vector-wave (Helmholtz) equation is the one typically solved in frequency

domain methods, and can be easily posed in the time domain. In these kinds of schemes,

a single field, electric or magnetic, has to be computed. The major drawback is that a

linear system of equations has to be solved at each time-step. To reduce the number of

time-steps, an implicit time integration scheme, e.g. Newmark-beta, can be used, but

the resulting system matrix becomes quite ill-conditioned. This family of methods has

been widely studied by Lynch, Mur, Lee, Gedney, Carpes, Jin et al., [12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22].
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The system composed of the first-order coupled Maxwell curl equations can be formu-

lated considering electric field intensity E and magnetic flux density B, or electric field

intensity E and magnetic field intensity H. In the case of E-B formulation, different

expansion functions are used for the E and B fields, offering certain advantages with re-

spect to the single-field formulation, such as avoiding spurious solutions or the fact that

the first-order time derivatives allow the use of conventional Leap-Frog time-integration

method, which avoids maintaining in memory previous states. The main drawback,

again, is the need to solve a sparse linear system at each time-step, and its computa-

tional cost is therefore comparable to the single-field scheme. A worthwhile proposal

was reported by Rieben et al. in [23]. The major developments of the E-B methods are

currently being carried out by Texeira et al. [24, 25, 26, 27].

If E-H formulation is used, two different family methods can be identified by considering

how the continuity of the tangential components of E and H fields are treated. Hence,

if the continuity of the tangential components is assured in a strong way, as in the

previous FEM methods, we have Continuous Galerkin (CG) methods. In this case,

the resulting schemes are equivalent to the single-field ones, with the same limitations

that both single-field and E-B formulations have, a linear system will be necessary

to be solved each time-step. In case tangential components are not enforced to be

continuous between elements, jumps are allowed, and we find Discontinuous Galerkin

(DG) methods. Instead, continuous numerical fluxes are defined at the interface in

order to connect the solution between them in the manner used in Finite Volume Time

Domain (FVTD) methods, which is the main idea of Discontinuous Galerkin Time-

Domain (DGTD) methods. In this case, the limitation concerning the resolution of

a complete linear system is overcome, which is the main motivation for developing of

numerical methods based on DG spatial discretization.

The main advantage of DGTD over FVTD is its higher order in space, while the advan-

tage over other FEM methods in TD resides in the fact that the matrix of the linear

system to be solved becomes diagonal and DGTD needs only the inversion of M square

matrices of Q×Q elements (with M the number of elements and Q the number of basis

functions per element), while larger matrices (' MQ ×MQ) are involved in FEM in

TD.

DGTD can be seen as a generalization of FVTD and also FDTD methods, [28]. Thus,

many of the ideas already developed in FVTD and FDTD can be adapted to DGTD.

Since the beginning of this century, the number of scientific publications on DGTD

methods applied to CEM have been growing linearly, and today this is becoming an

active research area. The efforts on the application of DGTD methods to solve Maxwell’s

equations, have followed two main different directions:
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• Analysis of the different alternatives or improvements offered by DGTD technique,

and analysis of the method itself.

• Capabilities and application of the method. To adapt previous capabilities from

FDTD or FVTD, or develop new ones to prove the method in real applications.

1.2.2 Analysis, Improvements and Alternatives of the Discontinuous

Galerkin Methods

Discontinuous Galerkin (DG) techniques have been broadly used in other disciplines.

The analysis, improvements, and alternatives of DG methods can be found mainly in

the mathematics community. Most authors refer in this subsection as belonging to this

community.

The first DG method was introduced in 1973 by Reed and Hill [29] in the framework of

neutron transport. Lesaint and Raviart [30] were the first to place this method on a firm

mathematical basis. Since then, there has been an active development of DG methods for

hyperbolic and nearly hyperbolic problems. In the case of linear equations, the nature of

the method has been rigorously analyzed by Johnson and Pitkäranta [31], Richter [32],

Peterson [33], and Bey and Oden [34]. For nonlinear equations, a major development

was made by Cockburn, Shu and collaborators, in a series of papers [35, 36, 37, 38,

39], in which they established a framework for easily solving nonlinear time-dependent

hyperbolic conservation laws using explicit, nonlinearly stable high-order Runge-Kutta

time discretizations (RKDG). Thus, in 1997, Bassi and Rebay [40] introduced a DG

method for the Navier-Stokes equations, in computation fluid-dynamics (CFD), and

in 1998, Cockburn and Shu [41] introduced the so-called Local Discontinuous Galerkin

(LDG) methods, extending their approach to deal with time-dependent scalar advection-

diffusion equation, and suggested how the approach could be applied to the Navier-Stokes

equations, which generalize the original DG method of Bassi and Rebay. Around the

same time, Oden and Bauman [42] introduced another DG method for diffusion problems

and many other authors, since then, started to apply DG in CFD.

Lowrie et al. [43, 44] considered the space-time Discontinuous Galerkin, which involves

discontinuous elements in both time and space. In [44] a Fourier analysis of the scheme

was performed which shows a ”super-convergence” property; i.e., the evolution error is

O
(
h2p+1

)
if the order of the polynomial space used is p while h is a measure for the size of

elements. Nevertheless, the method requires excessive resources to be useful for practical

applications. That property prompted Hu et al. to apply DG methods to advection and

linearized Euler equations, in computational acoustics, in [45] and continue the analysis

of DG applied to wave-propagation problems in [46, 47]. These researchers studied the
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dissipation, dispersion, and anisotropy errors introduced by the space discretization in

the wave-propagation problem. The results of these analyses can be easily extended to

the electromagnetic case.

Since 2002, DG methods have begun to find their way into CEM. Kopriva et al. [48],

Perugia and Schötzau [49], and also Houston [50], or even Cockburn, Li and Shu [51]

proposed and tested methods in 2-D, applied to simple numerical cases, where hp-

convergence of the semi-discrete spatial schemes were proved (see Chapter 3). However,

it was Hesthaven and Warburton in [52] who established the basis for lengthy analyses

that were performed before. Their proposal was predicated on nodal basis function,

upwind flux evaluation (see Chapter 3 for a detailed analysis of different alternatives in

the evaluation of the numerical fluxes) and Runge-Kutta (RK) time-integration scheme.

These authors analyzed their proposal in [53] from the eigenvalue problem perspective,

finding results similar to those of Hu for the advection equation. The important point

was that non-physical solutions (spurious modes) appear with a centered flux-evaluation

scheme. These spurious modes are dissipative in the case that upwind flux or penalty

terms were considered, as are typically used in DG methods for other applications (a

detailed analysis appears in Chapter 3). Warburton and Embree give more details on

this topic in [54], and Ainsworth et al. in [55, 56] and Grote et al. in [57] investigated

interior penalty (IP) properties considering the second-order wave equation.

Some ”super-convergence” analyses were performed (this topic has also been addressed

during this work in Chapters 3 and 4), considering time-integration schemes by Chen,

Cockburn, and Reitich in [58] and Sármány et al. in [59]. Chen proposed the so-called

mth-order, m-stage strong stability preserving Runge-Kutta (SSP-RK) scheme for the

time marching. The idea is relating the time integration order to the spatial order,

in this case ”super-convergence” is assured. Sármány made an in-depth study of the

dispersion and dissipation error of this scheme in [59].

A 3-D scheme based on vector-basis functions (see Chapter 2), tetrahedral elements,

non-dissipative centered flux evaluation (see Chapter 3) and second-order Leap-Frog

scheme for advancing in time (see Chapter 4), was introduced and analyzed by Fezoui et

al. in [60]. Cohen et al. in [61] used a similar scheme but with non-structured hexahedral

meshes in order to save memory and also introduced a local time-stepping scheme for

Leap-Frog time integration. Cohen and Duruflé in [62], and later Montseny et al. in [63]

followed the same approach, but they introduced dissipative terms in order to improve

accuracy, reducing the spurious modes present in centered flux schemes. Non-conforming

locally refined grids were introduced in this scheme by Canouet et al. in [64] and Fahs

et al. thoroughly analyzed this technique in 2-D and 3-D in [65, 66, 67], which can be
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identified as the traditional sub-gridding of the FDTD method. Also Fahs analyzed the

use of curvilinear elements in 2-D in [68].

Concerning time integration, Runge-Kutta (RK) and Leap-Frog (LF) are the most com-

monly used schemes (see Chapter 4 for details of these time-integration algorithms),

although others have been proposed and analyzed. Two main issues should be borne in

mind: (i) once arbitrary high-order accuracy in space is provided by DG methods in a

natural way, arbitrary high-order accuracy in time is required, and (ii), local refinement

of unstructured mesh can lead to a very restrictive and diverse time-step in order to

preserve the stability of explicit time-integration schemes, clearly fully implicit schemes

are avoided due to the computational cost.

RK methods have been traditionally used in such other disciplines as CFD, so those

can be extended only to CEM. Hesthaven and Warburton made a detailed analysis of

DGTD with RK schemes in their book [69]. Diehl et al. in [70] compared different

Multi-Step Low-Storage Runge-Kutta methods of different orders. Chen, as mentioned

above, introduced the SSP-RK scheme with the idea of attaining high-order accuracy

in time, as well as in space. The solution for the second point with RK methods is the

use of local time stepping (LTS) strategies (see Chapter 4 for the description of the LTS

algorithm proposed in this work). LTS, in the context of DG schemes on unstructured

meshes, was introduced firstly by Flaherty et al. [71]. Dumbser et al. [72] introduced

the arbitrary high-order scheme using derivatives for DG (ADER-DG). Making use of

ADER-DG, LTS can be implemented with RK methods, [69]. As an alternative to RK

methods, ADER scheme is also used for the time integration, instead of RK, which was

proposed by Taube et al. in [73], this method provides high-order accuracy in time and

advance in a single step, so it does not need intermediate stages as RK schemes do.

In the case of LF methods, high-order in time, referred to as LFN , was developed by

Fahs in [74]. Concerning the latter issue, there are basically two directions to cure this

efficiency problem. The first one consists of using a LTS strategy combined to an ex-

plicit time-integration scheme, while the second approach relies on the use of an implicit

or a hybrid explicit-implicit time-integration scheme. Some LTS strategies have been

proposed and tested by Canouet et al. in [64] and Montseny et al. in [63]. An implicit

method was applied to DGTD by Catella et al. in [75], which used the Crank-Nicolson

time-integration scheme. Afterwards, Dolean et al. in [76, 77] applied the same approach

but locally, proposing a hybrid explicit-implicit time-integration scheme. Another pos-

sibility, quite similar to LF, known as symplectic time schemes originally developed for

the numerical time integration of dynamical Hamiltonian systems (molecular dynamics,

astronomy, etc. (Sanz-Serna et al., [78])), were introduced to CEM and applied to the
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DGTD method by Piperno, [79, 80]. Piperno developed both solutions, a locally implicit

symplectic scheme and a multi-scale fully-explicit symplectic scheme.

Finally, structured and unstructured mesh-domain decomposition has been explored by

Davies et al. in [81] using triangles and Cartesian elements in 2-D. This idea has also been

tested in 3-D, in the finite volume time domain (FVTD) context, hybridized with FDTD

in [82] by Edelvik and Ledfelt, splitting the geometry into regions of hexahedral and

tetrahedral elements, geometrically coupling all these regions with pyramidal elements.

A hybrid approach DGTD/FDTD was also discussed by Garcia et al. in [28].

1.2.3 Capabilities and Applications of Discontinuous Galerkin Time

Domain Methods

The extension of ideas already developed for finite volume methods (FVTD), which can

be seen as an 0th order DGTD, and finite differences (FDTD), has allowed the vigorous

development of DGTD during the last 10 years, and its application to the analysis of

numerous electromagnetic problems.

Absorbing boundary condition

How to truncate space to deal with open/radiation problems or port terminations is

a key point of all TD methods. Many techniques have been studied in depth in the

FDTD context, applied to FVTD and can be straightforwardly extended to DGTD.

Firstly, Mohammadian, Shankar and Hall in [83, 84] proposed the simplest absorbing

boundary condition (ABC) in the FVTD context, which simply set the incoming flux to

zero, equivalent to a first-order Silver-Müller ABC (SM-ABC). Kabakian in 2004, with

Shankar and Hall, [85], extended this idea to DGTD and applied the method to antenna

and scattering problems. The very well-known truncation technique, perfectly matched

layer (PML), widely used in FDTD, were introduced to DGTD by Xiao in 2005, [86],

based on Cartesian coordinates. The uniaxial PML (UPML) family has been widely

studied in the FDTD, [87, 88, 89, 90], but with no real application in that context

apart from Cartesian coordinates, but these techniques are very appropriate to FVTD

and DGTD. The objective is to have a conformal PML layer in order to reduce the

computational domain. Thus, they have been successfully tested in FVTD by Sankaran

et al. in [91, 92, 93], and also used together by the same authors with SM-ABC with

non-additional computational cost. Dosopoulos et al. in [94] formulated UPML in

DGTD context for any conformal PML layer. Other implementations of UPML, based

on Cartesian coordinates, are, Lu et al. in [95] and Niegemann et al. in [96], in 2-D,

and Gedney et al. in [97] in 3-D with an extension to the so-called complex-frequency

shifted PML in [98]. A noteworthy analysis performed by Niegemann et al. of their
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2-D version appears in [70]. The typical implementation, in all cases, is based on the

auxiliary differential equation (ADE) method (see Chapter 3).

Materials and sub-cell models

In 2004, Lu et al. [95], used the auxiliary differential equation (ADE) method, to handle

material-dispersion properties in 2-D. Same authors in [99] applied the method to the

ground-penetrating RADAR (GPR) in dispersive media and the same approach is used

in [96, 100] by Stannigel and Niegemann et al. to study nano-photonic systems and

metallic nanostructures, also in 2-D. König in [101] developed the formulation for the

2-D case for the anisotropic material case (see Chapter 3 for a 3-D general formulation).

Thin-layer sub-cell models can be naturally modelled in FVTD and, therefore, in DGTD.

Mohammadian et al. in [84] introduced resistive sheets and impedance surface models

in FVTD. Following the same idea, Pebernet et al. in [102] proposed a low-frequency

resistive model for thin composite materials in DGTD. Recently, Chun et al. in [103, 104]

developed high-order accurate thin-layer approximations for DGTD for general metal-

backed coatings and thin transmission layers. Concerning thin-wire sub-cell model,

Pebernet et al. in [102], and very recently Gödel in [105], introduced the traditional

approximation widely used in FDTD to DGTD methods. Dosopoulos et al. in [106]

developed models for lumped elements.

High performance computing

DGTD method leads to a locally implicit, globally explicit difference operator that

provides an efficient high-order accurate time-dependent solution. This fact makes al-

gorithms based on DGTD methods ideal for their implementation in highly parallel

environments. Bernacki et al. in [107, 108] showed a parallel implementation based on

mesh partitioning and message passing, demonstrating good parallel speedup. Klöckner

et al. in [109] implemented a DG method to run on off-the-shelf massively parallel graph-

ics processors (GPUs). Dosopoulos et al. in [94] showed the efficiency of the method,

solving electrically large electromagnetic problems as a complete aircraft. In appendix

A the algorithms implemented during this work are described considering high perfor-

mance computing (HPC) concepts, and tested in Chapter 5 with large electromagnetic

problems.

Real applications

With all the above features, many electromagnetic (EM) problems have been addressed

by DGTD methods (see Chapter 5 for the applications and validations carried out dur-

ing this work). In 2004, Kabakian et al. [85] used DGTD to deal with antenna and

RADAR cross-section (RCS) EM problems. In 2005, Ji et al. studied 2-D Waveguide-

Coupled Microring Resonators in [110], and Lu et al. in [99] applied the method to

ground-penetrating RADAR. In both cases, high-order accuracy is required so DGTD
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proved superior to the traditional FDTD. Chauvière et al. in 2006 [111], discussed

computationally efficient ways of accounting for the impact of uncertainty, e.g., lack of

detailed knowledge about sources, materials, shapes, etc., in computational time-domain

electromagnetics, he used the DGTD method to deal with this topic, and Shi et al. in

[112] simulated left-hand medium in DGTD. Again, Ji et al. in 2007 [113], studied the

cross sections of coupled nanowires. In 2008, Pebernet et al. [102] applied the DGTD

method to electromagnetic compatibility (EMC) problems. In 2009, Niegemann, König,

Stannigel and Busch [96, 100] used DGTD method to study nano-photonic systems and

metallic nanostructures. In 2010, Songoro et al. reviewed the main ideas of the DGTD

method in [114]. Finally, at the beginning of 2011, ANSYS released the first commercial

software based fully on the DGTD method.

1.3 Motivation

The main contribution of this work is the development, analysis, implementation, and ap-

plication of a Discontinuous Galerkin formulation to which the Leap-Frog time-integration

scheme has been applied. The method uses arbitrary order vector-basis functions and is

applied to unstructured meshes based on curvilinear tetrahedra. The simplicity of the

time-integration method allows the application of an efficient Local Time Stepping (LTS)

strategy. The generality and flexibility of the resulting method allow its application in a

wide variety of electromagnetic problems such as microwave devices, antenna modelling,

RADAR cross-section estimation, electromagnetic coupling, etc.. This technique has

been implemented to be executed in modern and powerful parallel computers, providing

good scalability performances. The capability of dealing efficiently with large differ-

ences in the element size, because of the LTS, maintaining an accuracy level throughout

the computational domain, selecting different orders of the basis functions in each ele-

ment, makes the Leap-Frog Discontinuous Galerkin (LFDG) a promising method, which

combines the advantages of Time Domain and Finite Element methods. Moreover, the

limitations of the LFDG method have also been assessed, opening new paths and broad-

ening current knowledge in computational electromagnetism.

The finite-element time-domain method in developed during this thesis has been imple-

mented in a Fortran code called SEMBA. This code is a fully parallelized (OMP-MPI)

computational tool that has been successfully applied to the above-mentioned kinds of

problems. The resulting tool fills a technological gap in computational electromagnetics,

overcoming some limitations of the traditional time-domain methods (FDTD, TLM or
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FIT). In particular, the stair-casing problem, which introduces limitation in the geomet-

rical discretization and anisotropic errors, and the poor convergence rate of the spatial

discretization of the electromagnetic fields.

1.4 Chapter Organization

The chapters in this thesis are organized as follows.

Chapter 2 briefly reviews the fundamentals of the finite element methods (FEM) for its

application to time domain (TD) schemes. The basis for the implementation of a FETD

method are drawn, considering the use vector-basis functions. The most relevant FETD

methods are also reviewed.

Chapter 3 presents the proposed spatial discretization scheme, which is based on the

Discontinuous Galerkin (DG) method. The semi-discrete form is formulated in a general

framework, which unifies different flux-evaluation schemes successfully applied to DG

methods. The main electromagnetic capabilities, which have been developed for this

method, are described, such as boundary conditions treatment, anisotropic materials

and absorbing boundary conditions (ABC); the so-called first-order Silver-Müller ABC

and the conformal uniaxial perfectly matched layer (C-UPML). The spatial semi-discrete

scheme is studied, analyzing numerical dispersion and dissipation, spuriousness and

convergence.

In Chapter 4, the temporal integration scheme is applied to the semi-discrete DG for-

mulation. The Leap-Frog Discontinuous Galerkin (LFDG) algorithm and the proposed

local time stepping (LTS) strategy are described. Following a similar approach to that

used for the semi-discrete scheme, the LFDG algorithm is studied, considering topics

such as stability, spuriousness and global convergence of the method. A final assessment

of the computational cost vs. accuracy is performed, and compared to the well-known

FDTD method.

Chapter 5 validates the LFDG method with microwave filters, antennas, and scattering

electromagnetic problems, comparing the results with measurements and other numer-

ical techniques. It also explains some real applications of the LFDG method. Some

important properties of the method are shown, such as robustness, accuracy, stability,

versatility, efficiency, scalability, and accuracy.

Chapter 6 summarizes the main conclusions of this thesis and the futures lines of research

and development.
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Appendix A offers a description of the simulation tool SEMBA, and, finally, some in-

formation about the author of this thesis, a list of publications, and his curriculum

vitae.





Chapter 2

Finite-Element Time-Domain

Methods in Computational

Electromagnetics

Finite element methods (FEM), to solve general electromagnetic problems, have been

traditionally used in the frequency domain. Today, modern computation and memory

resources enable FEM to be applied to real problems in the time domain. Finite-element

time-domain (FETD) methods offer some major advantages over the classical approaches

to time domain computation in CEM; FDTD, FIT and TLM. Firstly, the use of unstruc-

tured grids offers superior versatility in geometry discrimination, and permits the appli-

cation of mesh refinement (h-refinement) to increase and control accuracy. Secondly, the

Faedo-Galerkin procedure, used to develop the weak statement [11], provides a natural

way to deal with continuity conditions at material interfaces, material properties such as

anisotropy, different sources, and so on. Finally, the use of Galerkin formulation provides

a huge variety of different choices, related to basis functions (p-refinement), including

the use of different finite elements in the same mesh (e.g. tetrahedra, pyramids and

hexahedra) or non-conforming meshes.

The main disadvantages compared to FDTD (or FIT and TLM) are mainly operative

features. The increment in complexity of the algorithms makes it more difficult to apply

some computational acceleration techniques, such as vectorization, cache management,

or parallelization, which are very effective in FDTD. In the case of analyzing large and

complex geometries, such as an aircraft, the generation of meshes requires more simpli-

fied geometry for finite element (FE) than finite difference (FD). Thus, the defeaturing

or geometrical cleaning process, prior to the mesh generation, is much more difficult for

FE, making the simulation setup more time consuming. Once the cell size, related to

15
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the accuracy and the minimum wavelength analyzed in the problem, is chosen, a FD

mesher parses out what is electrically irrelevant, compared to the cell size, and naturally

simplifies the geometry. However, a FEM mesher painfully tries to resolve every detail,

even irrelevant ones, from an electrical standpoint.

In this chapter, we lay the basis to deal with 3-D Maxwell equations in the time domain

making use of FE methods. Then, the most relevant FETD approaches for electromag-

netic modelling are reviewed.

2.1 Space Discretization

The numerical representation of a domain Ω under analysis by idealized elements deter-

mines how well that volume can be approximated (curvature, location, interfaces, etc.)

with the materials and different objects inside. Any numerical analysis is limited by the

geometrical discretization.

One objective of this study is to use of explicit schemes for the time integration. The

maximum time-step in a particular element, imposed by the Courant stability condition,

is restrained by its electrical size, and on the order of the basis functions employed in

that particular element. The material of adjacent elements, boundary conditions on its

faces, aspect-ratio, and curvature, also influence the stability condition. This means

that when small elements are needed to mesh the geometry, the Courant condition may

result in an oversampling in time, which would lead to lengthy computational times.

Scalar mappings to defined curved shapes are widely used in connection with the fi-

nite element solution of differential equations [115, 116, 117, 118, 119]. In this study,

unstructured conforming meshes based on tetrahedral elements are used for the spatial

discretization of the geometries. Hence, each of the four faces of a tetrahedron is the face

of only one other tetrahedron. Non-conforming meshes have been used in Discontinu-

ous Galerkin methods for more flexibility in the discretization of complex domains or

heterogeneous media, a detail description of these approaches appears in [64, 65, 66, 67].

With the application of scalar mapping, the local coordinate system (L1, L2, L3, L4,

with L1 + L2 + L3 + L4 = 1) is mapped to the global coordinate system (x, y, z),

making use of Lagrangian expansion functions. In tetrahedra the reference element has

the following vertexes: V1 ≡ (0, 0, 0), V2 ≡ (1, 0, 0), V3 ≡ (0, 1, 0), V4 ≡ (0, 0, 1). For

the straight tetrahedron, the geometric transformation needs four first-order Lagrange

polynomials. If the tetrahedron is curved, the mapping from reference to real elements

makes use of Lagrange polynomials of higher orders. Higher-order elements provide

better accuracy and permit larger elements.
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The mapping expressions are the following:

x =
Nn∑
i=1

xiBi (L1, L2, L3, L4), y =
Nn∑
i=1

yiBi (L1, L2, L3, L4), z =
Nn∑
i=1

ziBi (L1, L2, L3, L4)

(2.1)

where (xi, yi, zi) are called the node coordinates of the real tetrahedron and Nn the

number of Lagrange functions (4 for first order, 10 for second order, 20 for third order,

...) [115].
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Figure 2.1: Mapping from the reference tetrahedra to the real elements for first (O1),
second (O2) and third (O3) orders.

It is important to note that same expressions can be used for the mapping from the

reference triangle to each curved face of the tetrahedron; just one of the four local

tetrahedron coordinate will be zero, depending on the face.

The specific expressions for the tetrahedral element in local coordinates for the bi-

quadratic mapping are:

B1 = (2L1 − 1)L1 B6 = 4L2L3

B2 = (2L2 − 1)L2 B7 = 4L1L3

B3 = (2L3 − 1)L3 B8 = 4L1L4

B4 = (2L4 − 1)L4 B9 = 4L2L4

B5 = 4L1L2 B10 = 4L3L4

(2.2)
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Some differential geometry is necessary to numerically solve Maxwell Equations, so the

Jacobian matrix is defined to be able to numerically evaluate integrals or other spatial

operators directly in the local coordinate system as,

J =


∂x
∂L1

∂y
∂L1

∂z
∂L1

∂x
∂L2

∂y
∂L2

∂z
∂L2

∂x
∂L3

∂y
∂L3

∂z
∂L3

 (2.3)

Thus, the differential operator in the real coordinate system can be expressed as,
∂
∂x
∂
∂y
∂
∂z

 = [J ]−1


∂
∂L1

∂
∂L2

∂
∂L3

 (2.4)

The differential volume in the real coordinate system is evaluated making use of the

determinant of the Jacobian matrix,

dV = dxdydz = |J | dL1dL2dL3 (2.5)

The normal vector to one face of the tetrahedron can be expressed as the following

example for the face 3 (L3 = 0),

n̂ =
∇L1 ×∇L2

|∇L1 ×∇L2|
=

(
∂x

∂L1
x̂ +

∂y

∂L1
ŷ +

∂z

∂L1
ẑ
)
×
(
∂x

∂L2
x̂ +

∂y

∂L2
ŷ +

∂z

∂L2
ẑ
)

|∇L1 ×∇L2|
(2.6)

and the differential surface area is

dS = |∇L1 ×∇L2| dL1dL2 (2.7)

The magnitude of the cross product (2.6) plays the same role as the determinant of the

Jacobian matrix for the differential volume.

|∇L1 ×∇L2| =√(
∂y

∂L1

∂z

∂L2
− ∂z

∂L1

∂y

∂L2

)2

+
(
∂z

∂L1

∂x

∂L2
− ∂x

∂L1

∂z

∂L2

)2

+
(
∂x

∂L1

∂y

∂L2
− ∂y

∂L1

∂x

∂L2

)2

(2.8)
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In this work, second-order (O2) tetrahedral elements have been used for the space dis-

cretization. This kind of elements permits the discretization errors to be reduced in typ-

ical cases, such as coaxial cables or double curved surfaces, compared to the commonly

used straight or first-order elements. In those kinds of problems the space-discretization

errors are critical for the accuracy of the electromagnetic solution. Commercial software

able to generate good-quality second-order tetrahedral meshes is available [120].

2.2 Vector-Fields Discretization

Two main families of basis functions, scalar and vector basis, have been generally pro-

posed to solve electromagnetic problems with finite element methods. In both cases,

different piecewise polynomials are used to form the 3D vector space of order p. The

typical choice, in the case of scalar basis, is the use of Lagrange polynomials, as in the

space discretization, which gives rise to nodal finite elements. It is well-known that

when a straightforward nodal Continuous Galerkin finite element scheme is used to ap-

proximate the Maxwell curl-curl equation (Helmholtz operator), nonphysical or spurious

solutions appear, [121, 122], in frequency domain. The source of these problems is that

there are solutions of the Helmholtz equation that do not consistently approximate the

complete set of the Maxwell’s equations, as the Gauss’ law (divergence equal to zero)

[123, 124, 125]. To overcome the spurious modes problem, special vector curl-conforming

basis [126, 127] were proposed [123].

Currently, the dominant approach for finite element frequency domain methods is based

upon curl-conforming elements, also known as Nédélec or edge elements, [20, 128]. The

main advantages of curl-conforming basis in FEM, frequency domain and Continuous

Galerkin are: (i) the schemes are free of spurious solutions, (ii) boundary conditions are

easy to implement, (iii) normal discontinuity and tangential continuity between different

media are automatically satisfied, and (iv) better behaviour in non-convex domains than

nodal scalar basis, [129]. The main disadvantage is found in large problems with a high

number of degrees of freedom, where more ill-conditioned matrices are obtained with

curl-conforming than with nodal scalar basis.

In Discontinuous Galerkin methods, there are two important differences to bear in mind,

compared to Continuous Galerkin methods:

(a) The nature and solutions of the spurious modes in Continuous and Discontinuous

Galerkin approaches are different, and the lessons learned with the Continuous

case are not straightforwardly extrapolated to the Discontinuous case.

Spurious modes or non-physical solutions topic was analyzed in [53] based on nodal
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scalar functions. The conclusion was that there are no problems with spurious

modes if upwind flux evaluation, penalty or stabilization with purely dispersive

terms are introduced into the formulation. In the case that straightforward central

fluxes are used, spectral pollution due to the presence of non-physical spurious

modes will be found. Similar results were reported in [63], also with nodal scalar

functions, where penalization of the centered fluxes by dissipative terms were also

introduced to find more accurate results. In this work, a similar analysis has been

done, which appears in 3.5.1, with vector-basis functions, finding similar results.

(b) The Discontinuous Galerkin method needs only the inversion of M small matrices

of Q × Q elements (with Q the number of basis functions per element), while

larger matrices (' MQ ×MQ) are involved in Continuous Galerkin. Therefore,

no problems with ill-conditioned matrices are expected in Discontinuous methods.

Due to these two facts, it is not clear which kind of basis functions present more advan-

tages or disadvantages, and both families have been successfully applied in DG context,

scalar [107] and vector basis [130]. In both cases, spurious modes can be avoided, ap-

plying the same solutions. From an implementation standpoint, both kinds of basis

functions have advantages. In terms of matrix sharing between elements to save mem-

ory, both sets of functions have matrices which are identical, regardless of the element

size and aspect ratio, and can be shared among elements during the updating algorithm,

and some matrices, otherwise, are different and have to be kept in memory for each ele-

ment. Therefore, there is not such a clear advantage, for nodal or vector-basis functions,

as there is for FEM in frequency domain.

In any case, in this work, vector basis has been used and more specifically, hierarchical

high-order vector-basis functions, [130, 131, 132], which present some implementation

advantages in order to reduce computation and memory requirements.

2.2.1 Mapping Vector-Basis Functions to Curvilinear Elements

As noted above, vector-basis functions, hierarchical high-order ones in our case, are used

to discretize the vector fields (E and H). As has been introduced in section 2.1, second-

order tetrahedra will be used for space discretization. Expressions (2.1) and (2.2) will

be used to map the reference element to the curvilinear and real one. In the same way,

a local mapping has to be established for the basis functions [122].

Let the reference element be defined by local coordinates, (L1, L2, L3, L4) with L1 +

L2 + L3 + L4 = 1, and the specific mapping in (x, y, z) space as (2.1). To define and
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manipulate vector quantities within a curvilinear element, we introduce the base vectors,

li =
∂x

∂Li
x̂ +

∂y

∂Li
ŷ +

∂z

∂Li
ẑ with i = {1, 2, 3} (2.9)

and the reciprocal base vectors,

l′i = ∇Li =
∂Li
∂x

x̂ +
∂Li
∂y

ŷ +
∂Li
∂z

ẑ with i = {1, 2, 3} (2.10)

Note that the reciprocal base corresponds to the gradient of the local coordinates, and

both notations (l′i, ∇Li) are used indifferently.

In general, neither the base vector nor the reciprocal one are mutually orthogonal within

an element. Even the three vectors of each base are not orthogonal. However, they

always satisfied two important properties,

li · l′i = 1 with i = {1, 2, 3} (2.11)

li · l′j = 0 with i = {1, 2, 3} and j = {1, 2, 3} being i 6= j (2.12)

These properties enable us to express any vector B as a linear combination of any of

the two bases, just projecting that vector over the other base,

• covariant components of a vector

B =
3∑
i=1

(B · li) l′i (2.13)

• contravariant components of a vector

B =
3∑
i=1

(
B · l′i

)
li (2.14)

There are two kinds of vector-basis functions, known as div-conforming and curl-conforming.

Div-conforming basis functions keep a known value of the normal component at the

boundaries of the elements, tangential components being unknown and depending on

element aspect. In the case of curl-conforming, the tangential component at the faces

of the elements are known, independently of the element shape. Curl-conforming basis

functions are used when the curl operation of the discretized fields is necessary to be

evaluated, and div-conforming in case of divergence operation. In our case, ∇×E and

∇×H will be necessary to be evaluated, so a curl-conforming basis function is the right

choice.
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When a curl-conforming basis function is being constructed on a curvilinear element,

the appropriate mapping is given by,
Bx

By

Bz

 = J−1


B∇L1

B∇L2

B∇L3

 (2.15)

J being the Jacobian matrix defined by (2.3).

Therefore, we need to define our basis functions expressed in covariant components. The

curl operation can be expressed also considering the covariant components of the basis

functions as,

∇×B =
1
|J |

[(
∂B∇L3

∂L2
− ∂B∇L2

∂L3

)
l1 +

(
∂B∇L1

∂L3
− ∂B∇L3

∂L1

)
l2 +

(
∂B∇L2

∂L1
− ∂B∇L1

∂L2

)
l3

]
(2.16)

this giving a vector expressed in contravariant components. Thus, the right mapping

for curl operation is the following:
∇×B|x
∇×B|y
∇×B|z

 = JT


∇×B|l1
∇×B|l2
∇×B|l3

 (2.17)

In summary, defining vector-basis functions in covariant components, which is the usual

approach [132], and making use of equations (2.5), (2.7), (2.15), (2.16) and (2.17), we find

that all the calculations to evaluate volumetric and superficial integrals, needed in any

FEM implementation, can be performed in the local coordinate system (L1, L2, L3, L4).

2.3 Finite-Element Time-Domain Methods

The general procedure to develop numerical schemes for FETD is based on Faedo-

Galerkin weak solutions of the 3-D Maxwell equations, supplemented with boundary

conditions. It can be applied to both the hyperbolic system of the two curl equations,

and the vector-wave equation. From this perspective, different approaches have been

proposed [11], and the most relevant for this dissertation are reviewed in this section.

2.3.1 Single-Field Schemes

These schemes solve the second-order vector-wave or Helmholtz equation, also known as

double-curl or curl-curl Maxwell equation [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Let a
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material region Ω be characterized by the electric permittivity tensor ¯̄ε and the magnetic

permeability tensor ¯̄µ. It is considered lossless, electric and magnetic conductivity equal

to zero, for simplicity. The electric field E (a dual formulation could be expressed for

H) within the domain obeys the vector-wave equation given by,

∇×
(
¯̄µ−1∇×E

)
+ ¯̄ε

∂2E

∂t2
= −∂J imp

∂t
in Ω (2.18)

where J imp is the impressed current, source of our problem. Let us formulate the most

common boundary conditions, PEC, PMC, and ABC for unbounded media:

n̂×E = 0 on ∂PECΩ (2.19a)

n̂×∇×E = 0 on ∂PMCΩ (2.19b)

n̂× (n̂×∇×E) =
1
c
n̂× ∂E

∂t
on ∂∞Ω (2.19c)

For simplicity, we have adopted the Silver-Müller truncation condition or first-order

ABC, considering free space.

Equation (2.18), in its variational form, can be expressed as∫
Ω

w ·
[
∇× ¯̄µ−1∇×E + ¯̄ε

∂2E

∂t2
+
∂J imp
∂t

]
dΩ = 0 (2.20)

∀ w ∈ W, being W the test space, and with the usual dot product for
(
L2 (Ω)

)2.

The Galerkin procedure is the most common approach to obtain the numerical scheme,

when the same set of basis functions are used to expand the unknown vector field E and

test the equation.

Assuming that Ω is divided into a set of non-overlapping elements, a continuity require-

ment is imposed between adjacent elements. This condition is applied in a strong way,

such that the following relations need to be satisfied,

n̂×E+ = n̂×E− (2.21a)

n̂×
(
¯̄µ−1∇×E

)+ = n̂×
(
¯̄µ−1∇×E

)− (2.21b)

where the superscript + and − refer to adjacent elements.

This is normally fulfilled by choosing vector curl-conforming basis functions, where the

mapping is performed using covariant projection, and relating unknowns between adja-

cent elements.
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The solution of the problem is a linear combination of the unknowns and the expansion

functions as

Ẽ =
M∑
m=1

em (t)φm (r) = ET Φ (2.22)

where em are the unknowns and φm the vector-basis functions. E and Φ are column

vectors containing the M unknowns and basis functions, respectively.

Inserting (2.22) into (2.20) and using Φ as test functions, we find a semi-discrete system

of ordinary differential equations (ODE) as

M
d2

dt2
E + SE + J = 0 (2.23)

where

Mij =
∫
Ω

φi · ¯̄εφj dΩ (2.24a)

Sij =
∫
Ω

∇× φi · ¯̄µ−1∇× φj dΩ (2.24b)

Ji =
∫
Ω

φi ·
∂

∂t
J imp dΩ (2.24c)

The main advantage of the scheme (2.23), compared to dual-field schemes, is that only

one field has to be computed, which reduces the number of unknowns. This scheme has

two major drawbacks, time-discretization of the second-order time derivative requires

storage of previous time-step values, and the spatial semi-discrete scheme is implicit in

space. The basis functions force continuity between elements, because of (2.21), and

thus a complete banded linear system of equations has to be solved in each time step.

A solution to find a explicit scheme is to invert the mass matrix M. However, this can

be very costly and the inverse mass matrix is, in general, full. This makes the scheme

non-applicable for electrically large problems.

2.3.2 Dual-Field Schemes

Two main different approaches can be found in the literature. Both solve two equations,

the Ampere’s and Faraday’s Laws, also referred as the first-order coupled Maxwell curl

equations. In one case, the electric-field intensity (E) and the magnetic-flux density (B)

are computed [24, 25, 26, 27, 133] but, in the other case, are the electric-field intensity

(E) and the magnetic-field intensity (H). In the latter case, the Continuous Galerkin
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approach can be used [134], or the Discontinuous Galerkin approach, proposed in this

work.

2.3.2.1 E-B Finite-Element Time-Domain Method

Again, let a material region Ω be characterized by the electric permittivity tensor ¯̄ε

and the magnetic permeability tensor ¯̄µ. It is considered lossless, electric and magnetic

conductivity equal to zero, for simplicity. The electric field E and the magnetic flux B

within the domain obey the first-order coupled Maxwell curl equations given by

¯̄ε
∂E

∂t
= ¯̄µ−1 ∇×B − J imp (2.25a)

∂B

∂t
= −∇×E (2.25b)

where J imp is the impressed current, the source of our problem. Let us formulate the

most common boundary conditions, PEC, PMC, and ABC:

n̂×E = 0 on ∂PECΩ (2.26a)

n̂×B = 0 on ∂PMCΩ (2.26b)

n̂× (n̂×E) = c n̂×B on ∂∞Ω (2.26c)

Again, we have adopted the Silver-Müller truncation condition or first-order ABC, con-

sidering free space.

The electric field E is expanded in terms of Whitney edge basis functions w1
i , i =

1, 2, ...Ne, and the magnetic flux B is expanded in terms of Whitney face basis functions

w2
i , i = 1, 2, ...Nf . Thus, the expression for the unknown fields are

Ẽ =
Ne∑
m=1

em (t)w1
m (r) = ET W 1 (2.27a)

B̃ =
Nf∑
m=1

bm (t)w2
m (r) = BT W 2 (2.27b)

where em and bm are the unknowns, and Ne and Nf are the number of edges and faces,

respectively.

We denote column vectors containing the unknowns as, E = [e1, e2, ..., eNe ]
T and B =[

b1, b2, ..., bNf
]T and the sets of basis functions as, W 1 =

[
w1

1, w
1
2, ..., w

1
Ne

]T and W 2 =[
w2

1, w
2
2, ..., w

2
Nf

]T
.
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Inserting (2.27) into (2.25), we see that the second equation (2.25b) does not need to

be tested, since naturally becomes an identity. After testing the first equation (2.25a),

according to the Galerkin procedure, the results is a semi-discrete system of two ordinary

differential equations (ODE’s).

[?ε]
d

dt
E = [d∗curl]

[
?µ−1

]
B − J (2.28a)

d

dt
B = − [dcurl]E (2.28b)

where the Nf × Ne matrix [dcurl] and the Ne × Nf [d∗curl] are (metric free) sparse curl

incidence matrices on the primal and dual grids, respectively, the elements of which

assume only {−1, 0, 1} values. The identity [dcurl]
T = [d∗curl] holds, in general, up to

boundary terms. The incidence matrices fulfill the following expression:

∇×W 1 = [d∗curl]W
2 (2.29)

J column vector corresponds with the source term

Ji =
∫
Ω

w1
i · J imp dΩ (2.30)

The discrete Hodge matrices [?ε] (size Ne×Ne) and
[
?µ−1

]
(size Nf ×Nf ) in (2.28) are

given by the following integrals,

[?ε]ij =
∫
Ω

w1
i · ¯̄εw1

j dΩ (2.31a)

[
?µ−1

]
ij

=
∫
Ω

w2
i · ¯̄µ−1w2

j dΩ (2.31b)

In summary, the scheme employs edge basis functions (Whitney 1-form) to expand E,

and face basis functions (Whitney 2-form) to expand B. It is important to notice that

this strategy retains conformality to the discrete de Rham diagram [135], this being the

reason to choose B, instead of H as other schemes. This fact avoids spurious solutions

of the form t∇φ, which are present in the single-field FETD [15, 136, 137], particularly

restrictive for the use of PML.

The result is a scheme composed by two ODE’s with two fields as unknowns. Its com-

putational cost is comparable to the single-field scheme. The Hodge (mass) matrices are

sparse, but not diagonal, and the solution of the associated linear system is the most
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computationally intensive part of the scheme. The sparse linear-system solution is re-

quired only for the electric-field update in (2.28a), with (2.28b) being explicit. Therefore,

the size of the linear system to be solved is as large as the single-field scheme.

It is important to note that this scheme involves only first-order time derivatives instead

of the second-order ones of the single-field case. This allows the use of conventional

Leap-Frog time discretization which avoids to keep in memory previous states.

The main drawback of this scheme, as for the single-field case, is that is very costly for

electrically large problems and becomes non-applicable in real problems.

2.3.2.2 E-H Finite-Element Time-Domain Method

Again, let a material region Ω be characterized by the electric permittivity tensor ¯̄ε

and the magnetic permeability tensor ¯̄µ. It is considered lossless, electric and magnetic

conductivity equal to zero, for simplicity. The electric field E and the magnetic field H

within the domain obey the first-order coupled Maxwell curl equations given by

¯̄ε
∂E

∂t
= ∇×H − J imp (2.32a)

¯̄µ
∂H

∂t
= −∇×E (2.32b)

where J imp is the impressed current, source of our problem. Now the boundary condi-

tions, PEC, PMC, and Silver-Müller ABC are:

n̂×E = 0 on ∂PECΩ (2.33a)

n̂×H = 0 on ∂PMCΩ (2.33b)

n̂× (n̂×E) = η0 n̂×H on ∂∞Ω (2.33c)

In the same way as in the E-B scheme, the electric and magnetic fields are expanded,

and equations (2.32) are tested. In this case, the basis function sets for electric and

magnetic fields are the same. Thus, the expressions for the unknown fields, considering

vector-basis functions, take the following form

Ẽ =
N∑
m=1

em (t)φm (r) = ET Φ (2.34a)

H̃ =
N∑
m=1

hm (t)φm (r) = HT Φ (2.34b)

where em and hm are the unknowns, φm represents the vector-basis functions, and N is

the number of dofs or expansion/testing functions. We denote column vectors containing
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the unknowns as, E = [e1, e2, ..., eN ]T and H = [h1, h2, ..., hN ]T , and the basis functions

set as, Φ = [φ1,φ2, ...,φN ]T .

There are two different approaches depending on how the continuity between adjacent

elements is considered. It can be applied in a strong way, as it is in the single-field

scheme, or, otherwise, discontinuity can be allowed across the boundaries, forcing the

flux to be continuous.

In the first case, where field continuity is forced, an equivalent requirement for the basis

functions such as (2.21) has to be established,

n̂×E+ = n̂×E− (2.35a)

n̂×H+ = n̂×H− (2.35b)

Inserting (2.34) into (2.32), and testing these two equations according to the Galerkin

procedure, we obtain the following semi-discrete system of ODE’s,

M¯̄ε
d

dt
E = S H − J (2.36a)

M ¯̄µ
d

dt
H = −S E (2.36b)

where

M ¯̄α ij =
∫
Ω

φi · ¯̄αφj dΩ, with ¯̄α = {¯̄ε, ¯̄µ} (2.37a)

Sij =
∫
Ω

φi · ∇ × φj dΩ (2.37b)

Ji =
∫
Ω

φi ·
∂

∂t
J imp dΩ (2.37c)

The mass matrices M ¯̄α are sparse and not diagonal, due to the (2.35) requirement for

the basis functions, which makes it necessary to share the same unknown in adjacent

elements. Thus, the scheme (2.36) is implicit in space and requires the resolution of

two linear systems each time-step, making this approach computationally prohibitive

for electrically large problems.

In the case that field discontinuity between elements were allowed, basis functions do

not have the (2.35) requirement. Electrical and magnetic fields are expanded element

by element and the solution is not forced to be continuous at the boundaries between

adjacent elements. Instead, continuous numerical fluxes are defined at the interface

in order to connect the solution between them in the manner used in Finite Volume
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Time Domain (FVTD) methods, which is the main idea of Discontinuous Galerkin Time

Domain (DGTD) methods. Two common flux conditions are found in the literature:

the centered flux [52], and the upwind flux [84]. The latter is the one actually employed

in FVTD, and in fact, FVTD can be regarded as a special case of DGTD with this

flux, and 0th order (constant) scalar basis functions [75]. Apart from these two flux

conditions, a generalized flux can be expressed [53, 63] with a parameter that penalizes

the jump of the vector tangential components between the elements.

The main advantage of DGTD over FVTD is its higher order in space, while over Con-

tinuous FETD, the advantage resides in the fact that the mass matrices (M ¯̄α) become

diagonal and DGTD needs only the inversion of M square matrices of Q×Q elements

(with M the number of elements and Q the number of basis functions per element),

while larger matrices ('MQ×MQ) are involved in Continuous FETD.





Chapter 3

Spatial Discontinuous Galerkin

Method to Solve Maxwell’s

Equations

The Discontinuous Galerkin Time Domain method (DGTD) is a numerical technique

which is attracting a lot of attention in computational electromagnetics (CEM)[69].

DGTD starts from a variational formulation to integrate the spatial part of time-

domain (TD) Maxwell’s curl equations, with some differential integration scheme for

the time part. Like in Finite Element Methods (FEM), the space is divided into M

non-overlapping elements, in each of which the solution is expanded in a set of local

basis functions of arbitrary order. A weak form of Maxwell’s curl equations is found el-

ement by element by employing a Galerkin test procedure. Unlike in FEM, the solution

is allowed to be fully discontinuous across the boundaries between adjacent elements.

Thus local mass and stiffness matrices do not require the assembly of adjacent element

terms, with the subsequent computational advantage over classical FEM.

In this chapter, the Discontinuous Galerkin formulation, in its semi-discrete form, is

developed in a general framework which unifies different fluxes evaluation schemes suc-

cessfully applied to this method. The problem of dealing with anisotropic materials in

DGTD is addressed, in a 3-D general form. The conformal uniaxial perfect matching

layer (C-UPML) truncation condition is formulated in the Discontinuous Galerkin con-

text. Finally, the proposed spatial discretization scheme is studied, analyzing numerical

dispersion and dissipation, spurious and convergence topics.

31
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3.1 Discontinuous Galerkin Formulation

The Maxwell’s curl equations in three space dimension (R3) for heterogeneous isotropic

linear media without sources can be given in a unified form as follows. The electric

field E = (Ex, Ey, Ez) and the magnetic field H = (Hx, Hy, Hz) must satisfy following

equations:

µ
∂H

∂t
= −∇×E − σmH (3.1a)

ε
∂E

∂t
= ∇×H − σeE (3.1b)

The electric isotropic permittivity ε (r), the electric isotropic conductivity σe (r), the

magnetic isotropic permeability µ (r) and the magnetic isotropic conductivity σm (r)

are varying in space. Equations (3.1) do not include terms for impressed electric and/or

magnetic currents. The reason is that sources will be considered surface current densities

and will be included in the formulation through the flux terms.

Let Ω be a bounded finite region of R3 whose boundary is ∂Ω, where a numerical solution

of equations (3.1) is intended to be computed. The domain Ω is subdivided into M non-

overlapping and conformal elements, tetrahedra as described previously in section 2.1,

which conform the computational domain, ΩM . The mth element is defined by the

volume Tm, the boundaries ∂Tm and the electric and magnetic parameters (ε (r), σe (r),

µ (r) and σm (r)).

Ω ' ΩM =
⋃
M

Tm (3.2)

Local inner product and norm are defined in the finite elements Tm as,

〈u,v〉Tm =
∫
Tm

u · v dv, ‖u‖2Tm = 〈u,u〉 (3.3)

and also the local inner product over the boundaries ∂Tm,

〈u,v〉∂Tm =
∮
∂Tm

u · v ds, (3.4)

In this section, a semi-discrete scheme, based upon Discontinuous Galerkin technique

and vector-basis functions, is developed. Firstly, the basic semi-discrete scheme is formu-

lated. Then, the implementation of the most common boundary conditions is described,

which makes use of the flux terms to apply them in a weak way.
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3.1.1 Semi-Discrete Scheme Formulation

Let us define the sets of local vector-basis functions, described previously in section 2.2,

which are, in general, different in each element Tm, as,

Bm = {φm1 ,φm2 , ...,φmQ} , m = 1, ...,M (3.5)

This basis functions are used to expand the unknown vector fields quantities (E and H)

and test equation (3.1), which gives rise to the Galerkin method. Thus, the weak form

of Maxwell’s equations set (3.1) is found by using the inner product.∫
Tm

[
µ
∂H

∂t
+∇×E+σmH

]
· φmq′ dv = 0 (3.6a)

∫
Tm

[
ε
∂E

∂t
−∇×H+σeE

]
· φmq′ dv = 0 (3.6b)

Applying some algebra to the curl terms, we obtain,∫
Tm

(∇×U) · φmq′ dv =
∫
Tm

∇ ·
(
U × φmq′

)
dv +

∫
Tm

(
∇× φmq′

)
·U dv =

=
∮
∂Tm

(n̂m ×U) · φmq′ ds+
∫
Tm

(
∇× φmq′

)
·U dv

(3.7)

with U = {E,H}, and n̂m the outward unit vector normal to the element m.

Introducing (3.7) into (3.6) together with a tangential field continuity condition between

adjacent elements leads to a continuous FETD method [11]. Namely, adding the super-

script + to the fields at ∂Tm calculated in the element adjacent to m, the continuity

on the tangential field components on the common face ∂Tm of two adjacent elements

requires for continuous FETD that

n̂m ×Em+ = n̂m ×Em , n̂m ×Hm+ = n̂m ×Hm (3.8)

The main drawback of the resulting algorithm resides in its implicit nature, which re-

quires the solution of large systems of linear equations [118]. The core idea of DGTD is

to relax the continuity conditions to yield a quasi-explicit algorithm. Namely, instead

of plugging (3.8) into (3.7) and (3.6), DGTD defines numerical values of the tangential

fields on ∂Tm, henceforth called numerical fluxes (n̂m ×Hm∗ and n̂m × Em∗), which

do not coincide with any of the values of the tangential fields at any side of ∂Tm but
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depend linearly on them,

n̂m ×Em∗ = n̂m ×
(
f−E (Em,Hm) + f+

E

(
Em+,Hm+

))
(3.9a)

n̂m ×Hm∗ = n̂m ×
(
f−H (Hm,Em) + f+

H

(
Hm+,Em+

))
(3.9b)

This numerical flux is the one actually employed by any pair of adjacent elements to

calculate the surface (flux) integrals in (3.7), instead of n̂m ×Em and n̂m ×Hm.

Three common choices of the numerical flux are reported in the literature and are widely

described in section 3.2. A general form for these numerical fluxes is

n̂m ×Em∗ =n̂m ×Em + κme
[
n̂m × (Em+ −Em) +M s

]
+

νmh
[
n̂m × (n̂m × (Hm+ −Hm)− Js)

]
(3.10a)

n̂m ×Hm∗ =n̂m ×Hm + κmh
[
n̂m × (Hm+ −Hm)− Js

]
−

νme
[
n̂m × (n̂m × (Em+ −Em) +M s)

]
(3.10b)

where we have also included possible surface currents, to be used, for instance, in the

implementation of Huygen’s sources [138]. Table 3.1 shows the expressions for the κ and

ν factors for centered, upwind and partial penalized numerical fluxes. The terms which

are multiplied by ν factors are known as dissipative terms. These terms introduce some

dissipation to the scheme [59], but are essential to avoid the propagation of non-physical

or spurious modes in the computational domain. In section 3.5.1, dissipation rates are

numerically evaluated in the eigenvalue problem, finding that the dissipation rates for

the spurious modes are much higher than for the physical modes [53]. In case of ν = 0

(centered flux), there is no dissipation for both, physical and spurious modes, what

introduces spectral pollution to the method. In [63], Montseny et al. took advantage

of this fact and introduced, in a centered scheme, dissipation terms which improves

accuracy, referred here as partial penalized.

Table 3.1: Parameters in equation (3.10) to yield centered, upwind and penalized

numerical fluxes. Zm =
√

µm

εm = 1
Ym is the intrinsic impedance of the element m, and

Zm+ = 1
Ym+ is that of the adjacent one.
κme κmh νmh νme

centered 1
2

1
2 0 0

upwind Ym+

Ym+Ym+
Zm+

Zm+Zm+
1

Ym+Ym+
1

Zm+Zm+

penalized Ym+

Ym+Ym+
Zm+

Zm+Zm+
τ

Ym+Ym+
τ

Zm+Zm+
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Introducing (3.10) into (3.7), the curl terms can be written as,∫
Tm

(∇×Em∗) · φmq′ dv =
∫
Tm

(∇×Em) · φmq′ dv−∮
∂Tm

κme
[
n̂m ×

(
Em −Em+

)
−M s

]
· φmq′ ds−∮

∂Tm

νmh
[
n̂m ×

(
n̂m ×

(
Hm −Hm+

)
+ Js

)]
· φmq′ ds (3.11a)

∫
Tm

(∇×Hm∗) · φmq′ dv =
∫
Tm

(∇×Hm) · φmq′ dv−∮
∂Tm

κmh
[
n̂m ×

(
Hm −Hm+

)
+ Js

]
· φmq′ ds+∮

∂Tm

νme
[
n̂m ×

(
n̂m ×

(
Em −Em+

)
−M s

)]
· φmq′ ds (3.11b)

The semi-discrete algorithm is found by assuming that the space and time dependencies

of the fields can be separated. Thus, the spatial part is expanded, as it was said before,

within each element in the sets of vector-basis functions equal to the sets of test functions

(Galerkin method).

H ' H̃ =
Q∑
q=1

hmq (t)φmq (r) (3.12a)

E ' Ẽ =
Q∑
q=1

emq (t)φmq (r) (3.12b)

Finally, after expanding the vector magnitudes, H and E as (3.12), and introducing the

proposed evaluation expression of the curl terms (3.11) in (3.6), the final form of the

semi-discrete algorithm at the element m appears bellow. It has been assumed that the

material properties are constant inside each element.

µMdtH
m+ (σmM− Fνh)Hm+ F+

νhH
m+=− (S− Fκe)Em− F+

κeE
m+−Msκ+Jsν (3.13a)

εMdtE
m+ (σeM− Fνe)Em+ F+

νeE
m+= (S− Fκh)Hm+ F+

κhH
m+−Jsκ−Msν (3.13b)

where

• Hm and Em are column vector varying in time with the field coefficients (dofs) in

the element m, and Hm+ and Em+ with the field coefficients (dofs) of the adjacent
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elements,

Hm =
(
hm1 (t) , . . . , hmQ (t)

)T (3.14a)

Em =
(
em1 (t) , . . . , emQ (t)

)T (3.14b)

• Msκ, Msν , Jsκ and Jsν are column vector varying in time with the weak form of

the surface source terms in the element m,

Msκ =
(
〈φm1 , κme M s (r, t)〉∂Tm , . . . ,

〈
φmQ , κ

m
e M s (r, t)

〉
∂Tm

)T
(3.15a)

Msν =
(
〈φm1 , νme n̂m ×M s (r, t)〉∂Tm , . . . ,

〈
φmQ , ν

m
e n̂m ×M s (r, t)

〉
∂Tm

)T
(3.15b)

Jsκ =
(
〈φm1 , κmh Js (r, t)〉∂Tm , . . . ,

〈
φmQ , κ

m
h Js (r, t)

〉
∂Tm

)T
(3.15c)

Jsν =
(
〈φm1 , νmh n̂m × Js (r, t)〉∂Tm , . . . ,

〈
φmQ , ν

m
h n̂m × Js (r, t)

〉
∂Tm

)T
(3.15d)

• M is the mass matrix,

[M]q′q =
〈
φmq′ ,φ

m
q

〉
Tm

(3.16)

• S is the stiffness matrix

[S]q′q =
〈
φmq′ ,∇× φqm

〉
Tm

(3.17)

• F are the flux matrices

[Fκh]q′q=
〈
φmq′ , n̂

m × κmh φmq
〉
∂Tm

, [Fκe]q′q=
〈
φmq′ , n̂

m × κme φmq
〉
∂Tm

(3.18a)

[Fνh]q′q=
〈
φmq′ , n̂

m × n̂m × νmh φmq
〉
∂Tm

, [Fνe]q′q=
〈
φmq′ , n̂

m × n̂m × νme φmq
〉
∂Tm

(3.18b)[
F+
κh

]
q′q

=
〈
φmq′ , n̂

m × κmh φm+
q

〉
∂Tm

,
[
F+
κe

]
q′q

=
〈
φmq′ , n̂

m × κme φm+
q

〉
∂Tm

(3.18c)[
F+
νh

]
q′q

=
〈
φmq′ , n̂

m × n̂m × νmh φm+
q

〉
∂Tm

,
[
F+
νe

]
q′q

=
〈
φmq′ , n̂

m × n̂m × νme φm+
q

〉
∂Tm

(3.18d)

Notice that κ and ν factors, when the upwind flux is employed, are function of the

electric and magnetic parameters of the material of m element and all adjacent

elements, m+, so it is not a constant value for all [F]q′q coefficients. In case of

centered flux is straightforward employed, κ factors are constant
(

1
2

)
and ν factors

are equal to 0, so Fκh = Fκe, F+
κh = F+

κe and Fνh = F+
νe = F+

νh = Fνe = 0.

It is important to note that, if the space discretization, described in section 2.1, and the

vector-basis functions, introduced in section 2.2, are used in the semi-discrete system

(3.13), some matrices can be shared between the elements, since are independent of

geometrical data, resulting in a very significant memory saving. These matrices are: S,

Fκe, Fκh, F+
κe and F+

κh. Following, this fact is proved for the S matrix.
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The expression for a φ vector expansion function, in the 3-D reference cell, can be

written as,

φ = f1 (L1, L2, L3)∇L1 + f2 (L1, L2, L3)∇L2 + f3 (L1, L2, L3)∇L3 (3.19)

where L1, L2, L3 are local coordinates. Following notation is used,

φ = φ∇L1∇L1 + φ∇L2∇L2 + φ∇L2∇L1 = φxx̂ + φyŷ + φzẑ (3.20)

where φ∇Li = fi (L1, L2, L3), i = 1, 2, 3 are just polynomial functions.

We use curl-conforming basis functions on curvilinear cells, so the appropriate mapping

is given by the contravariant transformation (2.15), here rewritten for convenience with

the introduced notation, 
φx

φy

φz

 = J−1


φ∇L1

φ∇L2

φ∇L3

 (3.21)

J refers to Jacobian matrix. The curl operation can be evaluated making use of the

expressions (2.16) and (2.17), which can be written in a compact form as follows,
(∇× φ)x
(∇× φ)y
(∇× φ)z

 =
JT

|J |


∂φ∇L3
∂L2

− ∂φ∇L2
∂L3

∂φ∇L1
∂L3

− ∂φ∇L3
∂L1

∂φ∇L2
∂L1

− ∂φ∇L1
∂L2

 (3.22)

Therefore, S matrix does not depend on geometrical information as evidenced bellow,

[S]q′q =
∫
Vm

φq′ ·
(
∇× φq

)
dV =

∫
L1

∫
L2

∫
L3

J−1


φ∇L1

φ∇L2

φ∇L3


q′


T

JT

|J |


∂φ∇L3
∂L2

− ∂φ∇L2
∂L3

∂φ∇L1
∂L3

− ∂φ∇L3
∂L1

∂φ∇L2
∂L1

− ∂φ∇L1
∂L2


q

|J | dL1dL2dL3 =

∫
L1

∫
L2

∫
L3

[
φ∇L1 φ∇L2 φ∇L3

]
q′


∂φ∇L3
∂L2

− ∂φ∇L2
∂L3

∂φ∇L1
∂L3

− ∂φ∇L3
∂L1

∂φ∇L2
∂L1

− ∂φ∇L1
∂L2


q

dL1dL2dL3

(3.23)

since the kernels of these integrals are a combination of polynomial functions that depend

only on local coordinates. For Fκe, Fκh, F+
κe and F+

κh matrices similar results can be

obtained.
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3.1.2 Boundary Conditions

The flux conditions which serve to connect adjacent fields, also serve to implement the

most common boundary conditions. Following this approach, the implementation of the

most useful boundary conditions is described below.

1. The interface of two elements with different ε and µ is handled in an indirect man-

ner in the DGTD formulation, thanks to taking the same tangential components of

the fields n̂m×Em∗ and n̂m×Hm∗ in the flux integrals for two adjacent elements.

2. PEC boundary conditions on a face of an element m, require the tangential compo-

nent of the electric field employed in the flux integrals to be null, and the tangential

magnetic field to be continuous,

n̂m ×Em+ = −n̂m ×Em (3.24a)

n̂m ×Hm+ = n̂m ×Hm (3.24b)

This is easily fulfilled, in a weak form, considering different κ and ν factors in the

face of the m element in which PEC boundary condition is intended to be applied.

κme PEC = 2 κme , νme PEC = 2 νme (3.25a)

κmh PEC = 0, νmh PEC = 0 (3.25b)

3. PMC conditions are reciprocal of PEC,

n̂m ×Hm+ = −n̂m ×Hm (3.26a)

n̂m ×Em+ = n̂m ×Em (3.26b)

and the expressions for the κ and ν factors,

κmh PMC = 2 κmh , νmh PMC = 2 νmh (3.27a)

κme PMC = 0, νme PMC = 0 (3.27b)

Note that for the upwind flux, both for PEC and PMC, we must also assume

Y m+ = Y m and Zm+ = Zm.

4. Regarding the absorbing boundary conditions (ABC), the straightest ones are the

so-called first-order Silver-Müller (SM-ABC) [139], which are based on considering

that outside the computation domain the fields propagate as plane waves normally
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to the interface, n̂×n̂×E = Z (n̂×H), n̂×n̂×H = −Y (n̂×E). For the upwind

flux, this is directly implemented since it is equivalent to assuming that there is no

contribution to the flux from outside the region of solution, only remaining f−E,H
in (3.9).

Y m
(
n̂m ×Em+

)
= −n̂m × n̂m ×Hm+ ⇒ n̂m × f+

E = n̂m × YmEm++n̂m×Hm+

Ym+Ym+ = 0

(3.28a)

Zm
(
n̂m ×Hm+

)
= n̂m × n̂m ×Em+ ⇒ n̂m × f+

H = n̂m × ZmHm+−n̂m×Em+

Zm+Zm+ = 0

(3.28b)

In case of the centered flux, the SM-ABC is implemented with a slightly different

expression,

n̂m ×Em+ = − 1
Y m

(n̂m × n̂m ×Hm) (3.29a)

n̂m ×Hm+ =
1
Zm

(n̂m × n̂m ×Em) (3.29b)

In both cases the final formulation is the same. The SM-ABC, as the other bound-

ary conditions previously shown, is easily implemented just modifying the values

of the κ and ν factors,

κme SM-ABC = κmh SM-ABC =
1
2

(3.30a)

νmh SM-ABC =
1

2 Y m
, νme SM-ABC =

1
2 Zm

(3.30b)

SM-ABC provides perfect analytically reflection coefficient for normal incidence,

numerically reduced by the accuracy of the method, so depends on the order of the

expansion functions p and the size of the elements h. This figure rapidly degrades

when the angle of incidence changes from normal incidence [140]. In section 3.4.1,

conformal uniaxial perfect matched layer (C-UPML) is developed and integrated

in the scheme to overcome that limitation of the SM-ABC. It is important to note

that both ABC (SM-ABC and C-UPML) can be used together [91, 92, 141, 142],

improving the overall performance. This can be done with no cost in the DG

framework, sice SM-ABC is just removing outside flux terms.

3.2 Numerical Fluxes Evaluation

The flux concept appears in CEM in finite volume time domain (FVTD) methods,

[83, 84]. In FVTD, upwind flux evaluation is the mechanics to interchange information
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between elements. Centered flux has been considered in DGTD due to its simplicity,

versatility and efficiency, but raises the issues of spurious. In between of these two flux

conditions, a generalized flux can be expressed [53, 63] with a parameter that penalized

the jump of the vector tangential components between the elements.

Figure 3.1(a) shows the general case, without superficial sources, of the interface of

two elements containing different materials. The objective is to evaluate n̂ × E∗ and

n̂×H∗, known as flux functions, for all point P located in ∂Tm needed to compute the

flux coming from Tm+ to Tm element, across the face ∂Tm. The n̂×E∗+ and n̂×H∗+

flux functions refer to the reciprocal flux to Tm+ coming from Tm.

The flux functions are defined by solving exactly, as upwind does, or approximately, as

centered or partial penalized, a one-dimensional Riemann problem in the direction n̂

to the face ∂Tm, where n̂ × Em and n̂ × Em+, and n̂ ×Hm and n̂ ×Hm+, will be

discontinuous.

Let us define a local coordinates, t1, t2 and n, and the associated orthonormal local

vector base
(
t̂1, t̂2, n̂

)
as,

t̂1 =
∂r

∂t1

∣∣∣∣ ∂r∂t1
∣∣∣∣−1

(3.31a)

t̂2 =
∂r

∂t2

∣∣∣∣ ∂r∂t2
∣∣∣∣−1

(3.31b)

n̂ = t̂1 × t̂2 (3.31c)

Note that infinite local vector bases could be found, the idea is to decompose into normal

(n̂) and tangential
(
t̂1, t̂2

)
components along the face ∂Tm, so any of the infinite local

vector bases could be considered. The transformation matrices, ¯̄R and ¯̄R
−1

, between

the local vectorial base of (3.31) and the Cartesian vectorial base can be defined as,
x̂

ŷ

ẑ

 = ¯̄R


t̂1

t̂2

n̂

 ,


t̂1

t̂2

n̂

 = ¯̄R
−1


x̂

ŷ

ẑ

 (3.32)

In figure 3.1(b), impressed electric and magnetic surface current densities (Js and M s)

along the face ∂Tm, have been included in the setup. These current sources must be

considered in the flux evaluation, and the discontinuity in the tangential components of
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 n 
t̂1 

t̂2 

 

∂Tm 

ˆ mn×E
ˆ mn×H

ˆ mn +×E
ˆ mn +×H

n̂ ∗×E
n̂ ∗×H

n̂ ∗+×E
n̂ ∗+×H

 mε

mµ

+mε
+mµ

(a) Flux evaluation setup, without sources.

 nTm 

 

 

∂Tm 

SMSJ

ˆ mn×E
ˆ mn×H

ˆ mn +×E
ˆ mn +×H

n̂ ∗×E
n̂ ∗×H

n̂ ∗+×E
n̂ ∗+×H

t̂1 
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(b) Flux evaluation setup, with sources.

Figure 3.1: Flux evaluation setups
Both tetrahedra are physically in contact, have been represented separated just for clarification. The

subscript m in the local vectors t̂1, t̂2 and n̂ has been removed for the same purpose.

the fields shall be introduced, fulfilling the well-known boundary conditions,

n̂× (E2 −E1) = −M s (3.33a)

n̂× (H2 −H1) = Js (3.33b)

The subindexes 1 and 2 correspond to the semi-spaces at one side and the other of the

surface where the currents are flowing. Js will produce a discontinuity in the vector

n̂×H, and M s will produce a discontinuity in the vector n̂×E.

In this section, numerical flux evaluation expressions are formulated for isotropic medi-

ums, including superficial current sources.

3.2.1 Centered Flux Evaluation

The centered flux [107] can be evaluated just by averaging the solutions of the fields at

both sides of the interface.

The expressions for the centered fluxes on the outer boundary face of the problem of

figure 3.1(a) are the following,

n̂×E∗ = n̂×E∗+ = n̂× E
m +Em+

2
(3.34a)

n̂×H∗ = n̂×E∗+ = n̂× H
m +Hm+

2
(3.34b)
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Figure 3.1(b) shows the general case with surface current sources on the interface of the

two elements. The flux expressions must fulfilled with the boundary conditions (3.33)

as follows,

n̂×
(
E∗ −E∗+

)
= M s (3.35a)

n̂×
(
H∗ −H∗+

)
= −Js (3.35b)

Averaging again the solutions at both sides of the interface results,

n̂×E∗ =
n̂×Em

2
+

n̂×Em+ +M s

2
=

n̂×
(
Em +Em+

)
+M s

2
(3.36a)

n̂×H∗ =
n̂×Hm

2
+

n̂×Hm+ − Js
2

=
n̂×

(
Hm +Hm+

)
− Js

2
(3.36b)

The reciprocal flux expression can be written as,

n̂×E∗+ =
n̂×

(
Em +Em+

)
−M s

2
(3.37a)

n̂×H∗+ =
n̂×

(
Hm +Hm+

)
+ Js

2
(3.37b)

It is important to note that all the centered flux functions expressed above do not

depend on material parameters, so these expressions are valid for any kind of materials;

dispersive, anisotropic, ...

3.2.2 Upwind Flux Evaluation

One standard approach for the development of numerical schemes to deal with multidi-

mensional and/or hyperbolic problems with source terms 1, is to use a fractional-step

or operation-splitting method [143]. In this approach simpler problems are somehow

solved, and the combination of them drives to a global scheme that approximates the

solution of the full problem.

Let us consider the time-domain Maxwell’s curl equations, assuming there is net electric

charge or current (σe 6= 0), considering heterogeneous isotropic materials, with µ and ε

1Referred to source terms as those included in the formulation apart from the ones belonging to the
hyperbolic conservative problem. For instance, dissipative terms due to electric or magnetic conductivity,
or new terms included in the formulation for the treatment of special materials as dispersive or PML
mediums.
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depending on space, where a electromagnetic wave is propagating.

µ
∂H

∂t
+∇×E = 0 (3.38a)

ε
∂E

∂t
−∇×H + σeE = 0 (3.38b)

The electric and magnetic field vectors are expressed in the local vectorial base described

in figures 3.1, E = (Et1 , Et2 , En) and H = (Ht1 , Ht2 , Hn). The ∇ operator can be

decomposed into two terms,

∇ =
∂

∂n
n̂ +∇S (3.39)

where ∂
∂n = ∇ · n̂ and ∇S denote the normal and surface derivatives with respect to the

local coordinates, respectively. The decomposition of the term ∇ × E results (a dual

expression holds for the ∇×H term),

∇×E =
∂

∂n
n̂×E +∇S ×E

∂

∂n
n̂×E = −∂nEt2 t̂1 + ∂nEt1 t̂2

∇S ×E = ∂t2En t̂1 − ∂t1En t̂2 + (∂t1Et2 − ∂t2Et1) n̂

(3.40)

Time-domain Maxwell’s curl equations of (3.38) can be rewritten as,

∂H

∂t
+

1
µ

∂

∂n
n̂×E +

1
µ
∇S ×E = 0 (3.41a)

∂E

∂t
− 1
ε

∂

∂n
n̂×H − 1

ε
∇S ×H +

σe
ε
E = 0 (3.41b)

A operation-splitting method for (3.41) is applied by first splitting the equations system

into two subproblems that can be solved independently. In this case we take these to

be:

Problem A:
∂H

∂t
+

1
µ

∂

∂n
n̂×E = 0 (3.42a)

∂E

∂t
− 1
ε

∂

∂n
n̂×H = 0 (3.42b)

Problem B:
∂H

∂t
+ 1

µ∇S ×E = 0 (3.43a)

∂E

∂t
− 1

ε∇S ×H + σe
ε E = 0 (3.43b)

The idea of the operation-splitting method is that different methods can be used for each

subproblem and combined to obtain a global scheme. Hence, we split the general problem
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(3.38) into a homogeneous conservation law, that includes the Riemann problem, and

the rest, then we can use standard methods for each.

With this approach, we isolate the discontinuous problem from the rest, which is fully

continuous. It is important to remark that this separation can always be done, although

other source terms were considered in the formulation. The expressions derived bellow,

therefore, are valid in a wide sense for any isotropic medium (dissipative, dispersive,

PML and so on), as soon as Problems A is identified. Notice also that different subprob-

lems could have been defined, for instance the source terms can be extracted in a new

subproblem from Problem B. However, the proposed separation of problems is enough

for our purpose, since only Problem A is required to derive upwind flux evaluation

expressions.

We intend to solve Problem A in the scenario shown in figure 3.1, allowing discontinu-

ities of the fields. This makes that some singularities arise in the derivative terms ∂
∂n .

This fact drives to the Riemann problem. Problem A can be rewritten as a first-order

hyperbolic multidimensional system of four PDE,

∂tHt1 −
1
µ
∂nEt2 = 0 (3.44a)

∂tHt2 +
1
µ
∂nEt1 = 0 (3.44b)

∂tEt1 +
1
ε
∂nHt2 = 0 (3.44c)

∂tEt2 −
1
ε
∂nHt1 = 0 (3.44d)

where normal components have been removed, since are not part of Problem A. The

one-dimensional Riemann problem can be expressed in a compact manner as,

∂tq̄ + Ān∂nq̄ = 0 (3.45)

with q̄ = (Ht1 , Ht2 , Et1 , Et2)T and Ān matrix,

Ān =


0 0 0 − 1

µ

0 0 1
µ 0

0 1
ε 0 0

−1
ε 0 0 0

 (3.46)

The equation system (3.45) is hyperbolic because the matrix Ān has 4 real eigenvalues

(λp). We refer to the corresponding set of 4 linearly independent right eigenvectors

as (rp). Any vector q̄ or (n̂ ×H and n̂ × E) can be uniquely decomposed as linear

combination of these eigenvectors, what provides a decomposition into distinct waves.
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The corresponding eigenvalues of Ān give the wave speeds at which each wave propagates

in the medium. There are two eigenvalues −1√
µε and two eigenvalues +1√

µε . The minus

sign means that the wave is coming into the element and the plus sign the wave is going

out.
λ1 = λ2 = −1√

µε ;

λ3 = λ4 = 1√
µε ;

r1 = (0,−Y, 1, 0)T ; r2 = (Y, 0, 0, 1)T

r3 = (0, Y, 1, 0)T ; r4 = (−Y, 0, 0, 1)T
(3.47)

where Z =
√

µ
ε = 1

Y .

It important to note that (3.45) corresponds to a variable-coefficient linear system. We

can identified a matrix Ām
n in Tm and a possible different matrix Ām+

n in Tm+. Solving

the Riemann problem consists of fulfilling the Rankine-Hugoniot jump condition [143]

at both sides of ∂Tm, which is easily solved in terms of the eigenvalues and eigenvectors

of the matrices Ām
n and Ām+

n . The Rankine-Hugoniot condition means decomposing the

jumps or discontinuities into a linear combinations of the eigenvectors.

The solution of the Riemann problem are the intermediate states (q̄∗ and q̄∗+). Figure

3.2 shows the domains for these solutions. The jumps between the intermediate states

and the values at both sides of ∂Tm, must be a linear combination of the eigenvectors

associated to the negative eigenvalues for the element Tm, and the eigenvectors associated

to the positive eigenvalues for the element Tm+. Hence we must have,

q̄∗ − q̄m = αm1 r
m
1 + αm2 r

m
2 (3.48a)

q̄m+ − q̄∗+ = αm+
3 rm+

3 + αm+
4 rm+

4 (3.48b)

for some scalar coefficients αm1 , αm2 , αm+
3 and αm+

4 . In order to solve the equation

system (3.48), we need a relation between q̄∗ and q̄∗+. If no surface current sources are

present, as in figure 3.1(a), then q̄∗ = q̄∗+, otherwise, if there is surface current sources,

as in figure 3.1(b), the jumps introduced by the boundary conditions of (3.35), must be

considered.

The results for the scalar coefficients without surface current sources are the following,

αm1 =

(
Hm
t2 −H

m+
t2

)
− Y m+

(
Emt1 − E

m+
t1

)
Y m + Y m+

αm+
3 = −

(
Hm
t2 −H

m+
t2

)
+ Y m

(
Emt1 − E

m+
t1

)
Y m + Y m+

αm2 = −
(
Hm
t1 −H

m+
t1

)
+ Y m+

(
Emt2 − E

m+
t2

)
Y m + Y m+

αm+
4 =

(
Hm
t1 −H

m+
t1

)
− Y m

(
Emt2 − E

m+
t2

)
Y m + Y m+

(3.49)
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Figure 3.2: Structure of the solution to the Riemann problem for homogeneous mate-
rials (variable-coefficient), in the space-time plane (n-t plane). ∂Tm shows the interface
between the two different elements. The waves propagate at its speed in each material.

Between the waves are two states q̄∗, q̄∗+.

Using equations (3.48), the solutions for each tangential field component are,

H∗t1 = H∗+t1 =
ZmHm

t1 + Zm+Hm+
t1
−
(
Emt2 − E

m+
t2

)
Zm + Zm+

(3.50a)

H∗t2 = H∗+t2 =
ZmHm

t2 + Zm+Hm+
t2

+
(
Emt1 − E

m+
t1

)
Zm + Zm+

(3.50b)

E∗t1 = E∗+t1 =
Y mEmt1 + Y m+Em+

t1
+
(
Hm
t2 −H

m+
t2

)
Y m + Y m+

(3.50c)

E∗t2 = E∗+t2 =
Y mEmt2 + Y m+Em+

t2
−
(
Hm
t1 −H

m+
t1

)
Y m + Y m+

(3.50d)

which can be expressed in electric and magnetic fields format as,

n̂×E∗ = n̂×E∗+ = n̂×
Y mEm + Y m+Em+ + n̂×

(
Hm+ −Hm

)
Y m + Y m+

(3.51a)

n̂×H∗ = n̂×H∗+ = n̂×
ZmHm + Zm+Hm+ − n̂×

(
Em+ −Em

)
Zm + Zm+

(3.51b)
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Finally, a general form of the solution of the Riemann problem, with surface electric and

magnetic current densities, appears bellow.

n̂×E∗ =
n̂×

(
Y mEm + Y m+Em+

)
+ Y m+M s + n̂×

[
n̂×

(
Hm+ −Hm

)
− Js

]
Y m + Y m+

(3.52a)

n̂×H∗ =
n̂×

(
ZmHm + Zm+Hm+

)
− Zm+Js − n̂×

[
n̂×

(
Em+ −Em

)
+M s

]
Zm + Zm+

(3.52b)

n̂×E∗+ =
n̂×

(
Y mEm + Y m+Em+

)
− Y m+M s + n̂×

[
n̂×

(
Hm+ −Hm

)
− Js

]
Y m + Y m+

(3.52c)

n̂×H∗+ =
n̂×

(
ZmHm + Zm+Hm+

)
+ Zm+Js − n̂×

[
n̂×

(
Em+ −Em

)
+M s

]
Zm + Zm+

(3.52d)

3.2.3 Partial Penalized Flux Evaluation

The partial penalized flux [53, 63, 69, 70] generalizes both previous schemes. Two

different terms can be clearly identified in all upwind flux expressions. Considering

(3.52), the same holds for (3.51), and introducing the penalty parameter, τ , may be

written the general flux evaluation expressions as,

n̂×E∗ =
n̂×

(
Y mEm + Y m+Em+

)
+ Y m+M s

Y m + Y m+
− τ

n̂×
[
n̂×

(
Hm −Hm+

)
+ Js

]
Y m + Y m+

(3.53a)

n̂×H∗ =
n̂×

(
ZmHm + Zm+Hm+

)
− Zm+Js

Zm + Zm+
+ τ

n̂×
[
n̂×

(
Em −Em+

)
−M s

]
Zm + Zm+

(3.53b)

n̂×E∗+ =
n̂×

(
Y mEm + Y m+Em+

)
− Y m+M s

Y m + Y m+
− τ

n̂×
[
n̂×

(
Hm −Hm+

)
+ Js

]
Y m + Y m+

(3.53c)

n̂×H∗+ =
n̂×

(
ZmHm + Zm+Hm+

)
+ Zm+Js

Y m + Y m+
+ τ

n̂×
[
n̂×

(
Em −Em+

)
−M s

]
Zm + Zm+

(3.53d)

where τ = 1 reflects the upwind flux, while τ = 0 can be considered a central flux

evaluation expression. Note that (3.53) with τ = 0 is not rigourously (3.36) and (3.37),

some differences appear in the media interfaces, but both expressions are equivalent in

practice.

The penalty parameter plays the role of penalize the jump terms (n̂×
(
Em −Em+

)
and

n̂×
(
Hm −Hm+

)
). This terms stabilize the solution, and eliminate spurious modes that
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appear with centered flux introducing some dissipation, much higher for the spurious

modes than for the physical ones. A complete analysis of this topic appears in section

3.5.1.

3.3 Discontinuous Galerkin for Anisotropic Materials

Up to now, most formulations of the DGTD method are restricted to isotropic and, in

some cases, dispersive materials [95, 113]. The treatment of anisotropic materials within

a DGTD approach was discussed in [103], where the authors employed central flux as

has been deduced in section 3.2.1. But, central flux limitations are very well-known and

recently, in [101], upwind flux for 2-D systems was derived. Here, a generalized upwind

flux expressions in 3-D are derived, and the scheme reported in [101] could be seen as a

special case.

Let us consider in this case, the time-domain Maxwell’s curl equations, where we intro-

duce the electric permittivity and the magnetic permeability tensors, which are varying

in space and both defined symmetric positive (¯̄ε and ¯̄µ).

¯̄µ
∂H

∂t
+∇×E = 0 (3.54a)

¯̄ε
∂E

∂t
−∇×H = 0 (3.54b)

the medium is considered lossless, electric and magnetic conductivity equal to zero, for

simplicity.

In this section, flux evaluation expressions for DG with anisotropic materials will be

developed first, and then, the complete semi-discrete scheme will be formulated.

3.3.1 Flux Evaluation in Anisotropic Materials

In order to extend the application of DG method to anisotropic materials in 3-D, it

is necessary to develop the expressions for the upwind flux case. The expressions for

the centered flux shown in section 3.2.1 are also valid for anisotropic materials, and

the partial penalized flux expressions are easily obtained from upwind flux ones, just

including the factor τ in the dissipative terms.
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Considering the setup of the figures 3.1, we can define the ¯̄ε and ¯̄µ, also the inverse of

the tensors, in the local vectorial base described in figure 3.1 as,

¯̄ε =


ε11 ε12 ε1n

ε21 ε22 ε2n

εn1 εn2 εnn

 ¯̄ε−1 =


ε′11 ε′12 ε′1n

ε′21 ε′22 ε′2n

ε′n1 ε′n2 ε′nn

 (3.55a)

¯̄µ =


µ11 µ12 µ1n

µ21 µ22 µ2n

µn1 µn2 µnn

 ¯̄µ−1 =


µ′11 µ′12 µ′1n

µ′21 µ′22 µ′2n

µ′n1 µ′n2 µ′nn

 (3.55b)

Following the same approach that in the isotropic materials case, a operation-splitting

method for (3.54) is applied by first splitting the equations system into two subproblems.

For this propose, we decompose the rotational terms with (3.40), and split (3.54) in the

following problems:

Problem A:
∂H

∂t
+ ¯̄µ−1 ∂

∂n
n̂×E = 0 (3.56a)

∂E

∂t
− ¯̄ε−1 ∂

∂n
n̂×H = 0 (3.56b)

Problem B:
∂H

∂t
+ ¯̄µ−1∇S ×E = 0 (3.57a)

∂E

∂t
− ¯̄ε−1∇S ×H = 0 (3.57b)

Following exactly the same procedure that has been applied in the case of isotropic

materials, we can derive the one-dimension Riemann problem of (3.45), where in this

case the Ān matrix looks like,

Ān =


0 0 µ′12 −µ′11

0 0 µ′22 −µ′21

−ε′12 ε′11 0 0

−ε′22 ε′21 0 0

 (3.58)

and the expression for the four PDEs are,

∂tHt1 + µ′12∂nEt1 − µ′11∂nEt2 = 0 (3.59a)

∂tHt2 + µ′22∂nEt1 − µ′21∂nEt2 = 0 (3.59b)

∂tEt1 − ε′12∂nHt1 + ε′11∂nHt2 = 0 (3.59c)

∂tEt2 − ε′22∂nHt1 + ε′21∂nHt2 = 0 (3.59d)
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Let us define some 2× 2 matrices to clarify the expressions.

¯̄ε−1
2 =

(
ε′11 ε′12

ε′21 ε′22

)
, ¯̄µ−1

2 =

(
µ′11 µ′12

µ′21 µ′22

)
(3.60a)

D2 =

(
0 −1

1 0

)
, D−1

2 = DT
2 = −D2 =

(
0 1

−1 0

)
(3.60b)

We can now express Ān in a compact manner as,

Ān =

(
O2 ¯̄µ−1

2 D2

¯̄ε−1
2 D−1

2 O2

)
(3.61)

where O2 is a 2× 2 matrix with all elements equal to 0.

As it has been previously explained, to solve the Riemann problem it is necessary to

know the 4 real eigenvalues (λp) and the corresponding set of 4 linearly independent

right eigenvectors (rp) of the matrix Ān. This is the same that diagonalize the matrix

Ān in the following way,

Ān = RĀnΛĀnR−1
Ān

(3.62)

where each column of the RĀn corresponds to one right eigenvector, and each element

of the diagonal of the matrix ΛĀn is the associated eigenvalue.

The eigenvalues of Ān are precisely the solutions λ to the equation

det
(
Ān − λI4

)
= 0 (3.63)

Here det is the determinant operation and In are n× n identity matrices.

Operating with the blocks matrices defined above we find,

det
(
Ān − λI4

)
= −det

(
¯̄ε−1
2 D−1

2
¯̄µ−1

2 D2 − λ2I2

)
= −det

(
M2 − λ2I2

)
= 0 (3.64)

where we have defined a new matrix M2, whose eigenvalues (c2
1 and c2

2) are the square

of the eigenvalues of Ān matrix (−c1, −c2, c1 and c2). Thus, we can made following

definitions,

C2 =

(
c1 0

0 c2

)
, M2 = ¯̄ε−1

2 D−1
2

¯̄µ−1
2 D2 (3.65)

and also need to diagonalize the matrix M2 which can be expressed as,

M2 = RM2C2C2R−1
M2

(3.66)
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Figure 3.3: Structure of the solution to the Riemann problem for anisotropic materials
(variable-coefficient), in a 3-D representation of the space(2-D)-time(1-D) independent
variables. ∂Tm shows the interface between the two different elements. The waves
propagate at its speed in each material. Between the waves are two states q̄∗, q̄∗+,

linear combination of the right eigenvectors rp.

Now, we are ready to diagonalize Ān, as stated in (3.62), choosing the following ex-

pression for the matrix with the 4 eigenvectors as columns, which must fulfill with the

identity,

Ān=

(
O2 ¯̄µ−1

2 D2

¯̄ε−1
2 D−1

2 O2

)
=

(
−Y2D2RM2 Y2D2RM2

RM2 RM2

)(
−C2 O2

O2 C2

)
1
2

(
−R−1

M2
Z2D−1

2 R−1
M2

R−1
M2

Z2D−1
2 R−1

M2

)
(3.67)

Operating with expression (3.67), we can easily find the expressions for two matrices,

refer here as ”impedance” (Z2) and ”admittance” (Y2), which play a role equivalent to

the impedance (Z) and admittance (Y ) magnitudes defined for the isotropic case,

Y2 = ¯̄µ−1
2 D2RM2C−1

2 R−1
M2

D−1
2 (3.68a)

Z2 = RM2C−1
2 R−1

M2
¯̄ε−1
2 (3.68b)

Notice that (3.67) condition is fulfilled and also the following, Z2D−1
2 Y2D2 = I2.

We can identified a matrix Ām
n in Tm and, in general, a different matrix Ām+

n in Tm+.

Solving the Riemann problem consists of fulfilling the Rankine-Hugoniot jump condition
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[143] at both sides of ∂Tm which is easily solved in terms of the eigenvalues and eigenvec-

tors of the matrices Am
n and Am+

n . The Rankine-Hugoniot condition means decomposing

the jumps or discontinuities into a linear combinations of the eigenvectors. The solution

of the Riemann problem are the intermediate states (q̄∗ and q̄∗+). Figure 3.3 shows the

domains for these solutions. The jumps between the intermediate states and the values

at both sides of ∂Tm must be a linear combination of the eigenvectors associated to the

negative eigenvalues for the element Tm and the eigenvectors associated to the positive

eigenvalues for the element Tm+. Hence, the decomposition of the discontinuity into a

linear combination of the eigenvectors is the following,

q̄m+ − q̄m =

 −Ym
2 D2RMm

2
Ym+

2 D2RMm+
2

RMm
2

RMm+
2




αm1

αm2

αm+
3

αm+
4

 (3.69)

obtaining, for the anisotropic medium, the following expressions for the scalar coefficients

considering there are not surface currents,
αm1

αm2

αm+
3

αm+
4

=

 −R−1
Mm

2
D−1

2

(
Ym

2 + Ym+
2

)−1 R−1
Mm

2
D−1

2

(
Ym

2 + Ym+
2

)−1 Ym+
2 D2

R−1

Mm+
2

D−1
2

(
Ym

2 + Ym+
2

)−1 R−1

Mm+
2

D−1
2

(
Ym

2 + Ym+
2

)−1 Ym
2 D2



Hm+
t1
−Hm

t1

Hm+
t2
−Hm

t2

Em+
t1
− Emt1

Em+
t2
− Emt2


(3.70)

Finally, substituting the scalar coefficients α into equations (3.48), the solutions for the

tangential components of the electric and magnetic fields are,(
H∗t1

H∗t2

)
= D2

(
Zm2 + Zm+

2

)−1

[
Zm2 D−1

2

(
Hm
t1

Hm
t2

)
+ Zm+

2 D−1
2

(
Hm+
t1

Hm+
t2

)
−

(
Em+
t1
− Emt1

Em+
t2
− Emt2

)]
(3.71a)(

E∗t1

E∗t2

)
= D−1

2

(
Ym

2 + Ym+
2

)−1

[
Ym

2 D2

(
Emt1

Emt2

)
+ Ym+

2 D2

(
Em+
t1

Em+
t2

)
−

(
Hm+
t1
−Hm

t1

Hm+
t2
−Hm

t2

)]
(3.71b)

or in electric and magnetic fields format can be written as,

n̂×E∗ =
(

¯̄Y
m

+ ¯̄Y
m+
)−1 [ ¯̄Y

m
n̂×Em + ¯̄Y

m+
n̂×Em+ + n̂× n̂×

(
Hm+ −Hm

)]
(3.72a)

n̂×H∗ =
(

¯̄Z
m

+ ¯̄Z
m+
)−1 [ ¯̄Z

m
n̂×Hm + ¯̄Z

m+
n̂×Hm+ − n̂× n̂×

(
Em+ −Em

)]
(3.72b)
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the tensors are built from matrices defined by subindex 2 but completed to dimension 3

as follows,

¯̄A =

 A2
0

0

0 0 1

 with ¯̄A =
{

¯̄Z, ¯̄Y
}

(3.73)

3.3.2 Semi-Discrete Scheme Formulation

Following the DG procedure, described in section 3.1.1, with (3.54), we can find the

general semi-discrete algorithm at the element m applicable also to anisotropic materials.

Sources and medium losses, which could be also anisotropic, have been omitted for

simplicity.

M ¯̄µdtH
m − FνhHm + F+

νhH
m+ =− (S− Fκe)Em − F+

κeE
m+ (3.74a)

M¯̄εdtE
m − FνeEm + F+

νeE
m+ = (S− Fκh)Hm + F+

κhH
m+ (3.74b)

where

• Hm, Hm+, Em and Em+ are column vector with the dofs varying in time defined

in (3.14).

• M ¯̄µ and M¯̄ε are the mass matrices,

[
M ¯̄µ

]
q′q

=
〈
φmq′ , ¯̄µφmq

〉
Tm

(3.75a)[
M¯̄ε
]
q′q

=
〈
φmq′ , ¯̄εφmq

〉
Tm

(3.75b)

• S is the stiffness matrix, which does not change from the homogeneous case, (3.17).
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• F are the flux matrices

[Fκh]q′q =
〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄Z

m+ ¯̄R
−1 (

n̂m × φmq
)〉

∂Tm
(3.76a)

[Fκe]q′q =
〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄Y

m+ ¯̄R
−1 (

n̂m × φmq
)〉

∂Tm
(3.76b)

[Fνh]q′q =
〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φmq

)〉
∂Tm

(3.76c)

[Fνe]q′q =
〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φmq

)〉
∂Tm

(3.76d)

[
F+
κh

]
q′q

=
〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄Z

m+ ¯̄R
−1 (

n̂m × φm+
q

)〉
∂Tm

(3.76e)

[
F+
κe

]
q′q

=
〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄Y

m+ ¯̄R
−1 (

n̂m × φm+
q

)〉
∂Tm

(3.76f)

[
F+
νh

]
q′q

=
〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φm+

q

)〉
∂Tm

(3.76g)

[
F+
νe

]
q′q

=
〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φm+

q

)〉
∂Tm

(3.76h)

¯̄R and ¯̄R
−1

are the transformation matrices from the local vectorial base to Carte-

sian vectorial base defined in (3.32).

This semi-discrete scheme corresponds to the upwind flux evaluation case. In case of

partial penalized flux, the factor τ should be included in the terms Fνh, F+
νh, Fνe and

F+
νe. For centered flux scheme, the simpler expression (3.18) for the flux matrices can be

used, keeping (3.75) for the mass matrices.

3.4 Absorbing Boundary Conditions

Most of the problems appearing in this study are posed on unbounded domains. To

compute a numerical solution to such problems, it is necessary to truncate the space.

This is done by introducing artificial boundaries and/or regions what defines a finite

domain Ω. This boundary are named as Absorbing Boundary Conditions (ABC) which

simulate the extension of the domain to infinity. The main objectives concerned in the

design of ABC are, easy and efficient implementation, with respect to both memory and

computational time, and ideally non-reflecting boundary condition. Many ABCs types

have been reported during last three decades, all these ABCs are designed to have good

performance for one particular case. Moreover, the computational cost depends on the

order of the truncation in terms of their Taylor series approximation. If accuracy is

required, higher-order ABCs should be used [144, 145, 146, 147].
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Two ABC types have been addressed in this study, the so-called Silver-Müller (SM-

ABC) and Conformal Uniaxial Perfectly Matched Layer (C-UPML). It is important

to note that both ABC (SM-ABC and C-UPML) can be used together [91, 92, 141,

142], improving the overall performance. Due to its simplicity in DG context, SM-ABC

has been previously described in section 3.1.2. Following, the implementation of the

conformal UPML is described in detail.

3.4.1 Conformal Uniaxial Perfectly Matched Layer Formulation

Since Bérenger [148] introduction in 1994, of the PML method applied to FDTD method,

many different implementation and types of PMLs have been reported, but two kind

of formulations are prevalent. The first, known as non-Maxwellian PML or split-field

PML, Bérenguer’s PML belongs to this class, are derived by splitting the curl operator

in the different Cartesian components creating new nonphysical electric and magnetic

pseudo-fields in the PML region. The right combination of them recovers the original

Maxwell equations. Once this new components have been introduced, different electric

and magnetic conductivities can be applied to attenuate the energy inside the PML

but keeping impedance continuity with the Maxwellian medium. In the second kind

formulations, Maxwellian PML or uniaxial PML (UPML) which was proposed later

[87], the PML region is described as an artificial anisotropic absorbing material which

is introduced in the Maxwell equations fulfilling the same objectives, the energy inside

the PML will be attenuated and this energy get into the PML without reflection.

Both formulations, split-field and UPML, were derived independently trying to avoid

reflection of the incident field on the PML. However, both formulation were shown to

be equivalent using the general approach of stretched spatial coordinates [88, 89, 90].

In both cases the same thing is done, but the information inside the degrees of freedom

is different in each case. Following, the formulation for UPML is reviewed, which has

been implemented in DGTD context in this work.

Let us consider the setup of figure 3.4 used for the conformal UPML problem. There,

the interface of the PML region with the homogeneous medium is the surface S, and S′

is a surface conformal to S containing the PML internal point P ′, where we intend to

formulate the UPML. Considering the projected point P of P ′ on S, we can define local

coordinates as ξ1,ξ2 and ξ3, and both surfaces S and S′ can be expressed as a functions

of these local coordinates,

S ≡ f (ξ1, ξ2) , ξ3 = 0 (3.77a)

S′ ≡ f (ξ1, ξ2) + ξ3 (3.77b)
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Figure 3.4: Conformal UPML setup.

The locus of points of constant ξ3 correspond to parallel surfaces at a distance of ξ3 to

S.

An orthonormal local vectorial base can be defined as,

û1 = u1 (ξ1, ξ2) =
∂r

∂ξ1

∣∣∣∣ ∂r∂ξ1

∣∣∣∣−1

(3.78a)

û2 = u2 (ξ1, ξ2) =
∂r

∂ξ2

∣∣∣∣ ∂r∂ξ2

∣∣∣∣−1

(3.78b)

û3 = û1 × û2 (3.78c)

related to the Cartesian base through the basis-change matrix ¯̄R, and the principal radii

of curvature of the doubly curved surface S and S′ are function of the local coordinates,

r01 = r01 (ξ1, ξ2) , r02 = r02 (ξ1, ξ2) (3.79a)

r1 = r01 + ξ3, r2 = r02 + ξ3 (3.79b)

The UPML consists of a change on the metric of the space to the complex space in the

vectorial base (û1, û2, û3) of the local coordinate ξ3. The spatial coordinates inside the
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PML are mapped to the complex variables domain as:

ξ3 −→ ξ̃3 =
∫ ξ3

0
s (τ) dτ (3.80)

where s(τ) is the complex stretching variable, which can take different expressions [92,

149]. In this work, the following expression has been used,

s (τ) = 1 +
1
jω
σmax

(
τ

∆ξ3

)2

(3.81)

where ∆ξ3 is the PML thick and σmax the maximum conductivity in the PML. These two

parameters characterize the PML layer and determine the rate of decay of the energy of

the transmitter wave into the PML. Notice that we have chosen a parabolic dependence

of the stretching variable, this means the conductivity inside the PML medium will grow

in a parabolic profile. This growing rate can be tuned to minimize the reflexion of the

PML [148], but optimum value is usually problem dependent. Parabolic profile is a

typical choice.

The ideally reflected wave coefficient depends on the incident angle (θ) and can be

evaluated with the expression,

R0 (θ) = e−
2
3
σmax∆ξ3

c
cos(θ) (3.82)

where c = 1√
µε is the speed with which the wave travels along the direction of û3.

The resulting update expression of the spatial coordinate is given by,

ξ̃3 = ξ3 +
1
jω
σmax

ξ3

3

(
ξ3

∆ξ3

)2

(3.83)

and the stretching curvature radios by,

r̃1 = r01 + ξ̃3 = r1 +
1
jω
σmax

ξ3

3

(
ξ3

∆ξ3

)2

(3.84a)

r̃2 = r02 + ξ̃3 = r2 +
1
jω
σmax

ξ3

3

(
ξ3

∆ξ3

)2

(3.84b)

Next expressions defined the metric coefficients,

h1 =
r1

r01
,

h2 =
r2

r02
,

h3 = 1,

h̃1 =
r̃1

r01

h̃2 =
r̃2

r02

h̃3 = s

(3.85)
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The change of the space metric of (3.80) and (3.81) can be easily implemented as an arti-

ficial anisotropic material [88, 89, 90], whose general metric tensor, in local coordinates,

can be expressed in terms of the metric coefficients as,

¯̄Λ = û1û1

(
s
h1

h̃1

h̃2

h2

)
+ û2û2

(
s
h2

h̃2

h̃1

h1

)
+ û3û3

(
1
s

h̃1

h1

h̃2

h2

)
=


sh1

h̃1

h̃2
h2

0 0

0 sh2

h̃2

h̃1
h1

0

0 0 1
s
h̃1
h1

h̃2
h2


(3.86)

Inserting (3.79), (3.84) and (3.85) in (3.86), three different conductivities can be defined,

corresponding to each space direction, depending on the curvature radio and the distance

to the S surface.

σ3 (ξ3) = σmax

(
ξ3

∆ξ3

)2

(3.87a)

σ1 (ξ3) = σ3
ξ3

3r1
(3.87b)

σ2 (ξ3) = σ3
ξ3

3r2
(3.87c)

Finally the expression of the metric tensor is,

¯̄Λ =



(
1+

σ3
jω

)(
1+

σ2
jω

)
(

1+
σ1
jω

) 0 0

0

(
1+

σ3
jω

)(
1+

σ1
jω

)
(

1+
σ2
jω

) 0

0 0

(
1+

σ1
jω

)(
1+

σ2
jω

)
(

1+
σ3
jω

)


(3.88)

The UPML can be expressed in the frequency domain in a Maxwellian form, and in the

local vectorial base as,

∇×E = −jωµ ¯̄ΛH (3.89a)

∇×H = jωε ¯̄ΛE (3.89b)

For simplicity, only one component of (3.89a) is written, similar results can be found for

the other components and (3.89b),

(∇×E) |û1 = −jωµ

(
1 + σ3

jω

)(
1 + σ2

jω

)
(

1 + σ1
jω

) H|û1

= −jωµH|û1 − µ (σ3 + σ2 − σ1)H|û1 − µ
(σ3 − σ1) (σ2 − σ1)

jω + σ1
H|û1

(3.90)
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Equation (3.90) can be solved introducing an auxiliary field and an auxiliary partial

differential equation. Fourier transform, using identity jωf (ω)→ (∂/∂t) f (t), is applied

to formulate the equivalent differential equations in time-domain,

∂M

∂t

∣∣∣∣
û1

= −σ1M |û1 + µ (σ3 − σ1) (σ2 − σ1)H|û1 (3.91a)

µ
∂H

∂t

∣∣∣∣
û1

= − (∇×E) |û1 − µ (σ3 + σ2 − σ1)H|û1 −M |û1 (3.91b)

Finally, the set of equations for the PML layer for the fields magnitudes E, H and the

auxiliary fields (polarization currents) M and J , can be written as,

∂M

∂t
= − ¯̄A2M + µ ¯̄A3H (3.92a)

µ
∂H

∂t
= −∇×E −M − µ ¯̄A1H (3.92b)

∂J

∂t
= − ¯̄A2J + ε ¯̄A3E (3.92c)

ε
∂E

∂t
= ∇×H − J − ε ¯̄A1E (3.92d)

where all vectorial magnitudes are expressed in the Cartesian vectorial base (x̂, ŷ, ẑ).

The tensors ¯̄A1, ¯̄A2 and ¯̄A3 have the form,

¯̄A1 = ¯̄R


σ3 + σ2 − σ1 0 0

0 σ1 + σ3 − σ2 0

0 0 σ2 + σ1 − σ3

 ¯̄R
−1

(3.93a)

¯̄A2 = ¯̄R


σ1 0 0

0 σ2 0

0 0 σ3

 ¯̄R
−1

(3.93b)

¯̄A3 = ¯̄R


(σ2 − σ1) (σ3 − σ1) 0 0

0 (σ3 − σ2) (σ1 − σ2) 0

0 0 (σ1 − σ3) (σ2 − σ3)

 ¯̄R
−1

(3.93c)

being ¯̄R and ¯̄R
−1

the transformation matrices from the local vectorial base, defined in

(3.78), and the Cartesian vectorial base,
x̂

ŷ

ẑ

 = ¯̄R


û1

û2

û3

 ,


û1

û2

û3

 = ¯̄R
−1


x̂

ŷ

ẑ

 (3.94)

In order to solve (3.92) it is necessary to evaluate σ1, σ2 and σ3 in every point inside the
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toroids 

plane 

structure under analysis 

PML layer 

Figure 3.5: Definition of a conformal UPML making use of canonical geometries.

PML region. According to (3.87), these conductivities values depend on the two principal

radii of curvature r1, r2 of a general (doubly-curved) surface and the distance to the

PML frontier, ξ3. Finding these variables in a general problem is not an easy task, some

solution have been proposed in 2-D [26, 88, 150]. In this work, solutions for canonical

geometries have been implemented, so in a particular problem one or a combination of

different canonical geometries can be applied to truncate the computational domain as is

depicted in figure 3.5. In this case, the space, which encloses the structure under analysis,

is truncated by a closed surface composed of pieces of toroids and plane surfaces. Once

this frontier is established, the PML region is defined with the required thickness.

3.4.2 Discontinuous Galerkin Semi-Discrete Scheme Formulation

The Galerkin procedure jointly with the DG spatial technique, of section 3.1.1, can be

straightforwardly applied to (3.92), since curl terms in equations (3.92a) and (3.92c) do

not change from regular Maxwell’s equations. Hence, considering that the auxiliary fields

are expanded with the same set of basis functions, and auxiliary differential equations are

tested following Galerkin procedure, we find the following spatial semi-discrete scheme
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for the element m located in a PML region,

MdtM
m + MA2M

m=µMA3H
m (3.95a)

µMdtH
m+(µMA1 − Fνh)Hm+ F+

νhH
m+ =− (S− Fκe)Em− F+

κeE
m+−MMm (3.95b)

MdtJ
m + MA2J

m=εMA3E
m (3.95c)

εMdtE
m+ (εMA1 − Fνe)Em+ F+

νeE
m+ = (S− Fκh)Hm+ F+

κhH
m+−MJm (3.95d)

where

• Hm, Hm+, Em, Em+, Mm and Jm are column vector with the dofs varying in

time as (3.14).

• M is the mass matrix defined in (3.16) and MA1 , MA2 and MA3 are mass matrices

but affected by the tensors defined previously in (3.93),

[MAi ]q′q =
〈
φmq′ ,

¯̄Aiφmq
〉
Tm

with i = {1, 2, 3} (3.96)

• S is the stiffness matrix defined in (3.17).

• F are the flux matrices defined in (3.18)

It is important to note that in DG methods, the simplest absorbing boundary condition,

equivalent to a first-order Silver-Müller (SM-ABC), can be applied with no cost, just

setting the incoming flux to zero (see section 3.1.2). Hence, both (SM-ABC and C-

UPML) can be used together, improving the overall performance [92].

3.5 Analysis of the DG Semi-Discrete Scheme

The traditional approach to analyze the spatially/temporally propagating accuracy, dis-

persion and dissipation errors, of Discontinuous Galerkin Methods is based upon the

eigenvalue problem. Hu et al. in 2002 [47], presented a detailed study of the eigen-

solution of the DG Method with uniform and nonuniform grids applied to a system

of hyperbolic equations in one-dimension (1-D) space. In CEM, some studies appear

in 2004, Hesthaven and Warburton [53], where the presence and behavior of spurious

modes in the DG operator are described, and Ainsworth [55, 56] who studied the disper-

sive and dissipative properties of the DG methods in the Helmholtz equation. In 2006,

Warburton and Embree [54] described the role of the penalty in DG methods. Cohen

and Duruflé, in 2007 [62] showed the need of dissipation terms to avoid spurious modes
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in the DG schemes. Sármány et al., also in 2007, in [59], studied the dispersion and

dissipation errors, but considering the time integration scheme as well.

Classical continuous FEM methods, both in curl-curl and in the mixed formulation, are

well known for supporting spurious modes, which are non-physical solutions arising in

the numerical approximation not present in the analytical problem. Specially harmful

are non-divergent spurious modes (for divergence-free analytical problems) excited at

not null frequencies, since they severely corrupt near-field solutions. Lots of strategies

to reduce them are found in the literature. For nodal (scalar basis) FEM, regularization

techniques including conditions on the divergence of the solution, have been successfully

employed [151]. For vector FEM, it is possible to use curl-conforming elements for which

the basis vectors respect the natural (dis)continuity of the electromagnetic fields2, only

supporting spurious modes at null-frequency [27]. Higher-order hierarchal basis functions

were introduced in [132] with this purpose.

DGTD also exhibit the appearance of spurious modes [47, 53, 54, 55, 56, 59, 62]. How-

ever an added advantage of DGTD over FETD resides in its discontinuous nature that

permits to remove them due to the use upwind/penalized fluxes [54, 55, 56, 59, 62]. As

stated above, these fluxes are characterized by the addition to Maxwell equations of dis-

sipative terms, and are proven to attenuate spurious modes in space more strongly

than physical modes. The suppression of spurious modes becomes a critical issue

for DGTD formulations of the Perfectly Matched Layer (PML) truncation condition,

since instabilities appear otherwise [70]. Both DGTD for vector and scalar basis are

spurious-free for penalized fluxes, and have been successfully developed by several au-

thors [28, 52, 58, 60, 69, 86, 95, 97, 102, 108, 138], finding comparable levels of accuracy.

Of course, there are advantages and disadvantages of vector and nodal formulations,

basically in terms of computational implementations, also depending on the time inte-

gration scheme.

In this section we revisit the topic of spurious modes for simple 1-D and 3-D problems

in DGTD. Convergence of the dispersion and dissipation relationships of the method is

also analyzed for the semi-discrete DG space operator.

3.5.1 Numerical Dispersion and Dissipation of the DG Semi-Discrete

Scheme

The dispersion and dissipation of the numerical method will be studied by searching

for plane-wave solutions of frequency ω and wavevector k, in general complex. These
2Continuity on the tangential components, and discontinuity in the normal ones.
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functions, replaced in the original equations, lead to an eigenproblem, with eigenval-

ues providing the numerical dispersion and dissipation relationships ω = f(k), and with

eigenvectors providing the numerical-structure relationships between the dofs (field com-

ponents). For instance, the analytical Maxwell’s equations support planewaves in free-

space with the well-known dispersion relationship ω2 = k2/c2, and eigenvectors related

by η0H = k̂ × E, with c and η0 being the free-space speed of light and impedance,

respectively.

A practical way to study the dispersion of a numerical scheme approaching Maxwell’s

equations consists of restricting the space of solution to a bounded region with periodic

boundary conditions (PBC), since they can be numerically enforced in an easy way. Let

us assume for simplicity a 1-D-domain x ∈ [0,∆] and let us search for modes fulfilling

PBCs in space

Ψ(x = ∆, t) = e−jαΨ(x = 0, t) , ∀t , Ψ = {E,H} (3.97)

for arbitrary α ∈ [0, 2π). Plane-wave solutions of the form ej(ωt−kx) (leftwards k > 0

and rightwards k < 0) comply with the PBC condition (3.97) for a infinite numerable

spectrum of real wavenumbers kn (each oscillating at a complex frequency ωn)

kn = ±
( α

∆
+
π

∆
2n
)
, n = 0,−1,+1,−2,+2, . . .

ωn = f(kn) (3.98)

where we will refer to k0 = α
∆ as a fundamental mode, and to all other kn as harmonic

modes.

Let us apply this technique to the DG method in a semi-discrete form in space,

dtH
m =

1
µ

M−1
[
− (S− Fκe)Em − F+

κeE
m+ + FνhHm − F+

νhH
m+
]

(3.99a)

dtE
m =

1
ε
M−1

[
(S− Fκh)Hm + F+

κhH
m+ + FνeEm − F+

νeE
m+
]

(3.99b)

which is a simplified version of (3.13) for the m element, formulated in free-space without

sources.

We define a column vector U =
[(
h1

1, ..., h
1
Q

)
, ...,

(
hM1 , ..., hMQ

)
,
(
e1

1, ..., e
1
Q

)
, ...,

(
eM1 , ..., eMQ

)]T
with all the dofs of a given problem and express the homogeneous semi-discrete DG

equations (3.99),

jωU = ADGU (3.100)
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with ADG the semi-discrete DG operator. PBCs are easily enforced in DG through the

flux conditions by setting

n̂m ×Ψm+|x=∆ = e−jα(n̂m ×Ψm|x=0) ,

n̂m ×Ψm+|x=0 = ejα(n̂m ×Ψm|x=∆) , Ψ = {E,H}
(3.101)

Plugging (3.101) into (3.100), we find a homogeneous algebraic system of equations, with

a number of unknowns equal to the number of dofs. Nontrivial solutions correspond

to the eigenvectors of the semi-discrete space operator. Under the assumption that

the space operator is diagonalizable, there will exist a basis of eigenvectors Um, m =

(0, 1, . . . , dofs− 1), each propagating with a complex frequency ω = k̃m, with k̃m its

corresponding eigenvalue.

It should be noted that the Shannon sampling theorem [152] establishes an upper limit

to the maximum wavenumber which can be sampled in a spatial domain discretized

with dofs samples. For instance, let us assume a one-element domain in 1-D-DGTD,

solved with pth-order polynomials ((p+1) electric dofs plus (p+1) magnetic dofs). The

analytical bandwidth (3.98) which can be represented numerically is restricted to

|kn| =
∣∣∣k0 +

π

∆
2n
∣∣∣ ≤ π

∆
(p+ 1) , n = (0,−1,+1, . . .) (3.102)

That is, for each k0 6= π/∆ there3 exist (p + 1) leftwards analytical modes +|kn| plus

(p + 1) rightwards ones −|kn|, which can be numerically approximated. Of course,

numerical eigenvalues k̃ fulfilling the Shannon sampling theorem are not necessarily

proper approximation of the analytical ones k. In a broad sense, we will refer to these

numerical modes which do not properly approximate any analytical one, as spurious or

nonphysical modes.

Let us illustrate this for our simple 1-D 1-element case solved by nodal-DGTD and La-

grange polynomial pth-order basis. Figures 3.6,3.7 show the dispersion and dissipation

relation for 1st- and 2nd-order basis (with centered and upwind fluxes). We note that,

for p = 1, there appear one rightwards and one leftwards solution which approximate

the fundamental mode for well-resolved problems (L ≡ k0∆/(p+ 1)→ 0). Another two

modes (one leftwards plus rightwards) solutions are found, which should correspond to

the first harmonics (|k−1| = 2π
∆ − k0). Due to the coarse discretization of these modes,

close to their own Shannon limit for L → 0, the numerical phase speed is far from the

analytical one. These poorly sampled modes (for a well-resolved fundamental one) with

an undesired behavior are the spurious or nonphysical modes. It bears noticing that, in
3See figures 3.6,3.7 to see the case k0 = π/∆
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case of (L→ π), when |k−1| ≈ 0 and |k0| ≈ 2π
∆ , the situation is the opposite: the funda-

mental modes numerically propagate in a wrong way, providing a good approximation

of what has been defined as harmonics.

For p = 2, a similar analysis can be made. Apart from the two fundamental modes,

another four modes (two leftward plus two rightward) appear. In case of L→ 0, the first

harmonics (±k−1) can be distinguished in the numerical dispersion functions, but the

second harmonics ±k+1 present wrong behavior on the phase speed. For different inter-

vals of L, the different solutions, fundamental or harmonics modes, (±k̃0,±k̃−1,±k̃+1)

offer a better or worse approximation to the analytical solutions (±k0,±k−1,±k+1). In

case of upwind flux, much better approximation over more bandwidth is achieved than

for centered flux.

A noteworthy point here is to analyze the dissipation relationship of the upwind flux. All

modes propagate with an attenuation that is larger for poorly resolved modes than for

well-resolved ones. Clearly, for the fundamental mode, dissipation is minimum for L→ 0.

In case of the harmonics, this situation takes place for different intervals of L, where they

are properly resolved. Furthermore, in all cases, good phase dispersion corresponds to

low dissipation, and poor phase dispersion corresponds to a high dissipation relationship.

However, for the centered flux, the numerical modes do not attenuate in any case, and

poorly sampled analytical modes with wrong behavior (spurious) may appear together

with the well-resolved ones in a simulation.

The definition we use here of spurious solutions is broad in the sense that it provides

information for the whole spectrum of the semi-discrete space operator (which constitute

a basis for all possible solutions or diagonalizable operators): it provides criteria to dis-

tinguish physical from nonphysical behavior, just in terms of the correct approximation

between the analytical and numerical solutions. However, the qualification of spurious

mode actually depends on the analytical problem under study. For instance, if we excite

the PBC-analytical problem with the fundamental mode as initial values, we might not

expect the appearance of any of the higher harmonics in its numerical counterpart. In

this narrow sense, any solution apart from that corresponding to the fundamental mode

might also be considered spurious (see [53]), even if it is well resolved in space. To illus-

trate this, we have projected the fundamental (rightward) analytical mode k0, expanded

in a p = 10 polynomial basis, into the basis of numerical eigenvectors. Since these are

not orthogonal, we cannot assume a modal separation of the energy, but we still find

that for a good resolution L = 0.005, the numerical mode propagates with k̃0 ≈ k0 with

an amplitude ∼ 572 times higher that of the next mode, whereas this ratio lowers to

∼ 28 for a resolution of L = 0.11.
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Figure 3.6: Numerical dispersion and dissipation ω = f(k̃n) as a function of L =
k0∆/(p+ 1), for scalar 1-D-DGTD. Analytical dispersion in red ω = kn = ((p+ 1)L+
2nπ)/∆. Sub-index in k̃m has been added a posteriori according to the analytical mode
matched for some L region (no identification for k̃m has been guessed for p = 2 in the
centered case). Up: Centered p=1, Down: Centered p=2. The bandwidth allowed
by Shannon theorem is delimited with green lines, while dashed lines indicate modes
outside this band. Blue is used for numerical modes and red (magenta & brown) for

the analytical ones. (∆ = 1,µ0 = 1,ε0 = 1)
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Figure 3.7: Numerical dispersion and dissipation ω = f(k̃n) as a function of L =
k0∆/(p+ 1), for scalar 1-D-DGTD. Analytical dispersion in red ω = kn = ((p+ 1)L+
2nπ)/∆. Sub-index in k̃m has been added a posteriori according to the analytical mode
matched for some L region (no identification for k̃m has been guessed for p = 2 in the
centered case) . Up: Upwind p=1, Bottom: Upwind p=2. The bandwidth allowed
by Shannon theorem is delimited with green lines, while dashed lines indicate modes
outside this band. Blue is used for numerical modes and red (magenta & brown) for

the analytical ones. (∆ = 1,µ0 = 1,ε0 = 1)
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Figure 3.8: Geometry under analysis for the 3-D eigen-problem.
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Figure 3.9: Examples of the application of the 3-D-PBC between contour faces from
elements located at opposite sides.

3.5.2 Extension to Three Dimension

Let us move to a 3-D case solved with hierarchal vector basis that is complete up to

order p = 2, both for the gradient and the rotational spaces. We have meshed a cubic

domain in a symmetrical way composed of 24 tetrahedra, as is depicted in figure 3.8.

The 3-D-PBC in space can be expressed as,

n̂×H|i+∆i = n̂×H|i e
−jαi ,

n̂×E|i+∆i = n̂×E|i e
−jαi with i = {x, y, z}

(3.103)

where αi is the phase shift in each direction of the space. Considering that k0 = k0xx̂ +

k0yŷ + k0zẑ is the fundamental mode, the phase shift can be evaluated by αi = k0i∆i.

In our case, we enforced PBC in the x-direction with αx = 2π∆, being ∆ = 0.2, and

PBC conditions at the Y Z and ZX-planes with αy = αz = 0 (no delay). An example

of the application of the 3-D-PBC is depicted in figure 3.9.

The numerical eigenvalue k̃ is plotted in figure 3.10. There are 2MQ = 1440 modes

corresponding to the number of dofs of the problem (M = 24 tetrahedra and Q = 30

dofs per element). Again, we find that the spectrum of the DG operator depends heavily

on the flux-evaluation scheme. It can be seen that, for the centered scheme, none of
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the modes supported by the numerical method has dissipation k̃imag = 0. Therefore,

all numerical modes, both well-resolved physical and poorly resolved spurious solutions,

could be present in a numerical simulation and propagate on the computational domain.

On the contrary, for the upwind case, we can clearly distinguish between well-resolved

physical modes 4 and poorly resolved spurious modes by looking at their attenuation

k̃imag ≈ 0. Hence, poorly resolved spurious modes decrease exponentially with spatial

position and do not propagate along the computational domain. It is important to

note that some undesirable dissipation also affects the well-resolved physical modes,

depending on their spatial resolution.

For the penalized flux with τ = 0.1, similar conclusions are drawn. The main difference

is that the dissipation of the spurious modes decreases compared to the upwind case.

However, the choice of the τ parameter also has an impact on the stability conditions

of the final numerical scheme, as appears following (section 4.3) for the Leap-Frog (LF)

scheme and in [70] for Runge-Kutta (RK). In general, the stability upper limit in ∆t

becomes more restrictive when τ increases. The use of partial penalized flux with small

values of the τ parameter has negligible effects on the stability of the scheme while

keeping enough practical attenuation in the poorly resolved spurious modes.

Finally, let us consider a more realistic case: a 1m-side cubic 3-D PEC cavity meshed

with 5025 tetrahedra (see figure 3.11). The fields in the cavity are then excited via

a electric-current source with a Gaussian pulse time signal, with 10dB bandwidth of

approximately 400 MHz. The problem has been simulated up to a physical time of

0.5 µs by means of a fourth-order Runge-Kutta (RK4) time-integration scheme. This

problem was computed with centered, upwind and partial penalized flux, with very low

τ = 0.025 with hierarchal vector-basis functions of complete order p = 2.

The electric field is sampled at one point and the Fourier transform performed for the

vertical component (see figure 3.12). The power spectrum computed with centered flux

is noisy and shows spectral pollution due to the presence of nonphysical spurious modes.

In case of upwind or partial penalized flux (even for such a low value of τ), we can clearly

distinguish the different resonant frequencies.

A similar analysis appears in [53] with nodal functions, where the presence of spurious

modes, in case of centered flux, were reported as well. In case of upwind or penalized

schemes, the spurious modes are also present but having a significant dissipation asso-

ciated only with them (very little dissipation for the physical models depending on the

level of discretization) avoiding spectral pollution and the contamination of the solutions.

This fact, as has been proved above, does not depend on the kind of basis functions used
4Four fundamental rightward/leftward planewaves (two polarizations) and their corresponding har-

monics.
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Figure 3.11: Cubic PEC cavity.
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Figure 3.12: Power spectrum of the vertical component of electric field sampled at
a point inside the cavity, computed using centered, upwind and partial penalized (τ =

0.025) fluxes, 4th-order 2N-storage Runge-Kutta and p = 2.

by the scheme, as has been widely investigated in FEM in frequency domain, and it is a

remarkable difference in Discontinuous Galerkin time domain methods, compare to the

continuous formulation.

3.5.3 Convergence of the DG Semi-Discrete Scheme

The objective of this analysis is to understand the nature of the errors of the DG

operator, estimate the convergence rates and analyze the influence of the τ parameter.

Some convergence rates of Discontinuous Galerkin methods has been conjectured and/or

proven in other works, [47, 55, 56]. In our case the convergence rates of the DG operator

have been numerically evaluated with the 3-D problem described in the previous section

(see figure 3.8) with k0 = 2πx̂. The eigenvalue problem is numerically solved for different

∆ values. In all cases, the closest eigenvalue k̃m to k0 = |k0| is chosen as the valid one,

referred here as k̃0 = k̃real + jk̃imag. Numerical-dispersion, numerical-dissipation and

global errors can be computed as a function of k̃0 and k0.

Two different sources of error can be identified, one due to dispersion or phase delay,

which is in the real part (k̃real) related to the numerical velocity phase as ω

k̃real
, and

the other is dissipation or amplitude decreasing of the wave, which is related to the

imaginary part (k̃imag). Following expressions has been used to evaluate the different
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errors per wavelength (λ),

L2-norm error per wavelength due to phase delay:
∣∣∣e−jk0λ − e−jk̃realλ

∣∣∣ (3.104a)

L2-norm error per wavelength due to dissipation:
∣∣∣1− ek̃imagλ∣∣∣ (3.104b)

L2-norm error per wavelength:
∣∣∣e−jk0λ − e−jk̃0λ

∣∣∣ (3.104c)
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Figure 3.13: Convergence of the dispersion (upper left), dissipation (upper right) and
L2-norm (lower) errors of the physical mode for the DG operator with upwind flux.

The results for upwind flux appear in figure 3.13, where super-convergence property

of the DG operator is proved. The convergence rate for the phase error agrees with

O
(
h2p+2

)
and the amplitude error follows O

(
h2p+1

)
, being p the order of the polynomial

space for the vector-basis functions, and h a measure for the size of elements, h = ∆ has

been chosen in our case. These convergence rates are similar to those obtained by Hu

et al. [47] or Ainsworth [55, 56].
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Figure 3.14 shows the influence of the τ parameter in the dispersion, dissipation and L2-

norm errors for different p orders. In general, most of the practical and real applications

need an error of about 10−2, so this zone of the curves are of particular interest.
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(a.1) Dispersion error. (a.2) Dissipation error. (a.3) L2-norm error.
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(b.1) Dispersion error. (b.2) Dissipation error. (b.3) L2-norm error.
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(c.1) Dispersion error. (c.2) Dissipation error. (c.3) L2-norm error.

Figure 3.14: Influence of the τ parameter in the error of the DG operator for different
p orders. (a) p = 1, (b) p = 2 and (c) p = 3.

Figures 3.13 and 3.14 call for the following remarks:

• The error and the convergence rate for the dissipation error is worse than for the

dispersion error. Thus, the dissipation error places a higher requirement on the

resolution of the scheme than the dispersion error in the DG operator. This is an

important change from other methods like FDTD, which are not dissipative and

there is only dispersion error.

• Super-convergence of the error is found in all cases.
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• Despite of the fact that the dissipation of the spurious modes is only function of

τ parameter and very sensible to its value, dissipation error of the physical mode

is not noticeably reduced decreasing τ .

• However, τ has an influence in the dispersion error, but it is negligible from a

practical point of view.

• The typical error where real problems are solved, which is about 10−2, is in the

zone where the convergence rate becomes exponential.

• This analysis has been performed considering a plane wave traveling in an homoge-

nous medium. The extension of all these conclusions to any general problem must

be done with care. In case of geometrical singularities, as corners or vertex, the

convergence rate considerably decreases. It is very well-know that these problems

shall be dealt by increasing the resolution of the mesh, giving rise to h-p refinement

strategies.

This analysis do not take into account the time integration method. From spatial DG

discretization point of view, the main limitation is in the dissipation error, and the

dispersion error is bellow dissipation error. This fact should be considered in the design

of time integration schemes to avoid the introduction of more dissipation and keep under

control the dispersion error. It is important to notice that, the general approach for the

design of Runge-Kutta schemes optimizes the time step necessary for stable solutions,

while holding dispersion and dissipation fixed. It is found that maximizing dispersion

minimizes dissipation, and viceversa. In case of Leap-Frog, there is not dissipation

and the dispersion error depends on ∆t being a second-order accurate scheme. Some

limitations are, therefore, expected in case of LF because of dispersion error. Leap-Frog

with DG method is analyzed in detail in section 4.5. Higher order Leap-Frog (LFN )

schemes have been proposed with DG method which can relax that limitation, [67]

3.6 Summary of the Proposed Semi-Discrete Scheme

In this chapter a semi-discrete scheme for the Maxwell’s equation has been formulated.

The spatial discretization scheme is based on the Discontinuous Galerkin methodology,

and expressions for the flux evaluation, capable of easily dealing with the most common

boundary conditions (dielectrics, PEC, PMC, SM-ABC) and anisotropic materials, has

been developed. The formulation of the conformal UPML truncation condition has been

reviewed and integrated in the DG semi-discrete scheme. Finally, the numerical disper-

sion and dissipation of the spatial DG scheme have been analyzed, and the convergence
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rates of the different kinds of errors (dispersion and dissipation) have been numerical

estimated.

Three different schemes has been proposed for the evaluation of the flux between ele-

ments. Following the three are listed and a short rationale has been included.

• The centered flux, which is the simplest method, drives to numerical methods that

has problems with non-physical solutions or spurious modes.

• The upwind flux, which is the typically used in FVTD and it is the solutions to the

Riemann problem in the discontinuity of the tangential field components, drives to

a quasi-explicit semi-discrete scheme in space, not being fully explicit. In this case,

efficient time integration schemes, as the Leap-Frog can not be applied without

important restriction in the time-step. Respect to the spurious modes, they are

affected by the dissipation terms much more than the physical solutions, obtaining

a spurious-free method.

• The partial penalized flux is based upon the upwind scheme but the dissipative

terms are reduced by a factor. These terms are the ones that make upwind flux

scheme implicit in space. Making these terms smaller permits to use Leap-Frog

time integration scheme more efficiently and in an explicit way. The dissipation of

the spurious modes is smaller than in case of upwind flux, due to the reduction of

the dissipation terms, but are again much higher than for the physical solutions.

The result is a method where Leap-Frog can be used, and spurious-free, if the

dissipative terms are high enough.





Chapter 4

Discontinuous Galerkin Time

Domain Methods

Since the FDTD method was firstly proposed by Yee in 1966 [1] for solving Maxwell’s

equations, it has become undoubtedly the most widespread method among physicists

and engineers, due to its simplicity and flexibility to deal with real problems. However,

their inability to effectively handle complex geometries, due to stair-casing error, and

the limitations in the accuracy (second order in space and time O
(
h2,∆t2

)
), prompted

some scientists to search for alternatives long ago, being Finite Element (FE) the obvious

alternative. Considering all the schemes based on FE in the literature, Discontinuous

Galerkin Time Domain (DGTD) approaches gather most of the advantages of FDTD;

spatial explicit algorithm, simplicity, easy parallelization, and memory and computa-

tional cost growing linearly with the number of elements. Besides, DGTD schemes

retain most of the goods of FE, adaptability of the unstructured meshes and spatial

super-convergence what allows to deal with problems where the required precision varies

over the entire domain, or when the solution lacks smoothness.

With the spatial semi-discrete system at hand, the choice of the time integration scheme

is a crucial step for the global efficiency and viability of a numerical method. There are

two major families: implicit and explicit methods. Implicit schemes, as Crank-Nicolson

[75], require to solve a banded system of linear equations each time-step, which becomes

impractical in electrically large problems. Implicit methods usually are unconditionally

stable, and the time-step can be chosen as long as possible, considering only the highest

frequency under analysis, reducing to the minimum the number of required time-steps

in a complete simulation. Explicit schemes, however, are conditionally stable depending

on the spatial discretization, which results in a large number of iteration per analysis,

but the computational effort is very low for each time-step.

77
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It is important to remark here that the core idea of DGTD is to relax the continuity

conditions to yield a quasi-explicit algorithm. Hence, in this study, we focus on explicit

time integration schemes. Our objective is to design an arbitrary high-order DGTD

method, which combines the spatial discretization features of the method, discussed in

Chapter 3, with a efficient explicit time integration scheme.

There are two main explicit temporal integration schemes usually employed in DGTD

methods; (i) the well-proven and versatile Runge-Kutta (RK) schemes and (ii) the ef-

ficient Leap-Frog (LF) classically used for Maxwell’s equations. Both schemes are re-

viewed in this dissertation, but the main effort is put on LF, where a algorithm named

as Leap-Frog Discontinuous Galerkin (LFDG), is formulated, and, a fully explicit Local

Time Stepping (LTS) strategy is developed.

The overall accuracy of a time domain (TD) method is function of the convergence of the

spatial scheme with the element size (h), and the convergence of the temporal integration

scheme with the time-step (∆t). To characterize, therefore, the accuracy limits of a TD

method, not only does the spatial semi-discrete scheme have to be considered in the

analysis, but also the time integration method.

In this chapter, the Leap-Frog Discontinuous Galerkin (LFDG) algorithm, based upon

partial penalized flux evaluation, second-order Leap-Frog time integration scheme and

hierarchal vector-basis functions, is introduced. A Local Time Stepping algorithm is also

developed to make the method efficient enough to deal with real problems. The LFDG

method is analyzed, considering topics like stability, spurious and global convergence

of the method. Finally, a computational cost versus accuracy analysis of the LFDG

method is performed and compared to the well-known FDTD method.

4.1 Temporal Integration

The general DG spatial semi-discrete formulation introduced in Chapter 3, results in a

quasi-explicit scheme, in space, which permits efficiently the use of explicit time inte-

gration methods.

In this section, the more common schemes applied in DGTD methods are reviewed and

apply to the ODE system of (3.13). Firstly, the Low-Storage Runge-Kutta (LSRK)

scheme, which has been extensively used in DGTD methods [52]. Then, the well-know

Leap-Frog (LF), for which a local time stepping (LTS) technique has been developed.
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4.1.1 Runge-Kutta Scheme

Explicit Runge-Kutta (RK) methods are particularly popular due to their robustness,

flexibility and good performance. The main advantage of RK schemes, compared to

Leap-Frog (LF), is that these schemes easily allow to adjust the order of time integration

m to the order p of the spatial discretization. The used of fixed-order time-integration

schemes may spoil the high-order convergence of the global scheme. Thus, Cockburn,

Shu and collaborators in a series of papers [35, 36, 37, 38, 39], have proposed to use RK

methods for the time-marching of DGTD methods. In particular, they have employed

a special variation, where the number of stages s is equal to the order m of the method.

However, two problems are associated with these schemes. First, during a time-step

the results of all stages must be kept in memory, this leads to memory requirements

proportional to sN , being N number of the dofs. Increasing the order m in time,

increases memory requirements being prohibitively for electrically large problems. The

second problem is that the maximum allowed time-step in each element for these schemes

is quite restricted and becomes even more severe for higher orders of m.

In order to overcome these problems when order m grows, increasing of memory require-

ments and decreasing of efficiency due to more restricted stability condition, Hesthaven

and Warburton, [52], and other authors, as Chen [58], have explored the use of Low-

Storage Runge-Kutta (LSRK) methods. The required memory in these methods is pro-

portional to 2N , independently of the number of stages, Williamson [153]. Furthermore,

by using a larger number of stages s > m, it becomes possible to relax stability condition.

The disadvantage is that such methods are only known up to order m = 4. However,

for most real problems this suffices (recall that LF at best operates with second-order

accuracy, m = 2). Some particularly popular LSRK schemes with m = 4 and s = 5

have been derived by Carpenter and Kennedy [154]. One of this schemes is the actually

used in this work and described bellow. A very interesting comparison of the different

available RK methods applied to DGTD method in Maxwell’s equations was performed

by Diehl, Busch and Niegemann in [70].

Let us consider the matrix form of the semi-discrete system within each element m

without sources expressed as,

dtH
m =

1
µ

M−1
[
− (S− Fκe)Em − F+

κeE
m+ + FνhHm − F+

νhH
m+ − σmMHm

]
(4.1a)

dtE
m =

1
ε
M−1

[
(S− Fκh)Hm + F+

κhH
m+ + FνeEm − F+

νeE
m+ − σeMEm

]
(4.1b)

where we have left, in the left hand side, the time derivatives of the electric and magnetic

fields. We can identified (4.1) as a first order coupled ordinary differential equations
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(ODE’s) of the form,

dtU = F [t, U (t)] . (4.2)

being U = [H,E], all the dofs of the problem.

The discrete approximation is made with an 5-stage explicit RK scheme. The general

implementation over a time-step ∆t, from tn to tn + ∆t, is accomplished by,

k1 =F (tn, Un) (4.3a)

ki =F

tn + ci∆t, Un + ∆t
i−1∑
j=1

ai,jkj

 i = 2, 3, 4, 5 (4.3b)

Un+1 =Un + ∆t
5∑
j=1

bjkj (4.3c)

where Un = U(tn) and Un+1 = U(tn + ∆t) and the fixed scalars ai,j , bj and ci are the

coefficients of the RK formula.

This algorithm can be reworked, where each successive stage depends only on the pre-

vious one which gives rise to the Low-Storage Runge-Kutta (LSRK) method. Thus, the

5-stage equivalent algorithm becomes,

dUnj =AjdUj−1 + ∆tF
(
tn + cj∆t, Unj

)
(4.4a)

Unj =Uj−1 +BjdU
n
j j = 1, 2, 3, 4, 5 (4.4b)

So that the algorithm is self-starting, (A1 = 0) and only dUn and Un must be kept in

memory, which results in a 2N-storage algorithm.

In [154] appear precise values of Aj , Bj and cj that are required to yield a 4th order

scheme. Table 4.1 shows those used in this work.

4.1.2 Leap-Frog Scheme

In this section the Leap-Frog Discontinuous Galerkin (LFDG) algorithm is formulated.

It is based on the spatial DG scheme described in Chapter 3, where the explicit Leap-

Frog time integration scheme is applied.

An important limitation of any explicit time-integration scheme is the stability condition,

which imposes a maximum time step (∆tmMAX) in each element. The time step is found

to be dependent on its electrical size, and on the order of the basis functions employed

in that particular element. The material of adjacent elements, boundary conditions

on its faces, aspect-ratio, and curvature (in case quadratic elements) also influence the
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Table 4.1: Coefficients for optimal 5-stage, 4th order, 2N-Storage RK Scheme.
COEFFICIENT VALUE

A1 0.0

A2 − 567301805773
1357537059087

A3 − 2404267990393
2016746695238

A4 − 3550918686646
2091501179385

A5 − 1275806237668
842570457699

B1
1432997174477
9575080441755

B2
5161836677717
13612068292357

B3
1720146321549
2090206949498

B4
3134564353537
44814673103381

B5
2277821191437
14882151754819

c1 0.0

c2
1432997174477
9575080441755

c3
2526269341429
6820363962896

c4
2006345519317
32243100637761

c5
2802321613138
2924317926251

stability condition [63]. This fact, when we are dealing with unstructured meshes, results

in strong disparities in the required time step among elements, leading to a global time-

step constrained by the smallest one, in order to ensure global stability. This leads to

a major waste of computational time in updating elements at a rate much slower than

its own maximum time step. To avoid this problem, a fully explicit local time stepping

(LTS) strategy has been developed based upon a leap-frog integration scheme. Similar

schemes appear in [63, 79, 80].

Finally, we extend the LFDG algorithm to the semi-discrete system of (3.95), which

considers a UMPL medium with DG spatial discretization.

4.1.2.1 LFDG Algorithm

Let us consider the matrix form of the DG semi-discrete system of Chapter 3, within

each element m without sources expressed as,

µMdtH
m + σmMHm − FνhHm + F+

νhH
m+ =− (S− Fκe)Em − F+

κeE
m+ (4.5a)

εMdtE
m + σeMEm − FνeEm + F+

νeE
m+ = (S− Fκh)Hm + F+

κhH
m+ (4.5b)

The basis of leap-frog (LF) scheme is to sample the unknown fields in a staggered

way. Thus, the electric field is evaluated at tn = n∆t, and the magnetic field, at

tn+ 1
2

=
(
n+ 1

2

)
∆t. In the same way, equation (4.5a) is evaluated (or tested in time, if

we consider a point matching testing procedure), at tn and the equation (4.5b) at tn+ 1
2
.
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The first-order time derivatives will be approximated by central difference method, which

is second-order accurate.

(dtHm)n =
Hm
n+ 1

2

−Hm
n− 1

2

∆t
+O

(
∆t2

)
; (dtEm)n+ 1

2
=
Emn+1 − Emn

∆t
+O

(
∆t2

)
(4.6)

For the terms with the electric and magnetic conductivity, we use an average approxi-

mation which is also a second order approximation of the identity operation.

Hm
n =

Hm
n+ 1

2

+Hm
n− 1

2

2
+O

(
∆t2

)
; Em

n+ 1
2

=
Emn+1 + Emn

2
+O

(
∆t2

)
(4.7)

For the two extra dissipative terms arising from the upwind flux formulation, we use

the backward approximation (Hm
n ' Hm

n− 1
2

and Em
n+ 1

2

' Emn ), since an average approx-

imation (4.7) would yield a globally implicit scheme, due to the coupling terms from

the adjacent elements [94]. This fact introduces a slightly penalization in the stability

condition, and considering that purely upwind flux evaluation requires an also smaller

time step, the alternative is the use of partially penalized flux evaluation [63]. When

we choose an appropriate value of the τ parameter, the effect in the stability of the

scheme is very low (analyzed in detail in section 4.3). In case of centered flux evalua-

tion, these terms are null, but problems arise in relation to spurious modes (see section

3.5.1). When the temporal approximation for the dofs is inserted in (4.5), the resulting

fully explicit LFDG algorithm is the following,

Hm
n+ 1

2

=αmHm
n− 1

2

+ βmM−1

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

]
(4.8a)

Emn+1 =αeEmn + βeM−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn − F+
νeE

m+
n

]
(4.8b)

where the expressions for the constants are,

αm =
1− ∆tσm

2µ

1 + ∆tσm
2µ

, βm =
∆t

µ
(

1 + ∆tσm
2µ

) (4.9a)

αe =
1− ∆tσe

2ε

1 + ∆tσe
2ε

, βe =
∆t

ε
(
1 + ∆tσe

2ε

) (4.9b)

4.1.2.2 Local Time Stepping

The basis of the proposed LTS strategy is to arrange all the elements of the complete

mesh into L levels, considering each its own maximum time step and making use of

average approximations (or linear interpolations) when needed. The time step for the

level l is ∆tl = (2k + 1)l−1 ∆t1, k being a positive real integer and ∆t1 the effective time
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step for the first level (l = 1). All the elements of the l level must fulfill the condition

∆tl < ∆tmMAX (being ∆tmMAX the maximum ∆t for stability at the element m). For

instance, k = 2 means that there is a factor 3 between the time steps of consecutive

levels.

First of all, at the pre-process stage, we classify all the mesh elements into 2∗L−1 possible

sets requiring a special treatment: L different levels plus the L − 1 interfaces. Figure

4.1 shows an example in 2-D, where two levels and the interface have been identified.

LEVEL 1 

LEVEL 2 

    INTERFACE 

Figure 4.1: 2-D classification example of two LTS levels and the interface.

For simplicity, let us describe the LTS algorithm for this particular case (L = 2). The

procedure can be easily generalized to any problem with L levels. Let us define two

updating expressions, one for the electric field and other for the magnetic field, from the

LFDG algorithm of (4.8).

Hm
n+ p

2
=fH

(
p∆t1, Hm

n− p
2
, Hm+

n− p
2
, Emn , E

m+
n

)
(4.10a)

Emn+p =fE
(
p∆t1, Emn , E

m+
n , Hm

n+ p
2
, Hm+

n+ p
2

)
(4.10b)

where p is an integer value, which allows us to use the updating functions to compute

samples of the fields to any multiple of ∆t1.

The starting state 0 for the full sequence is shown in figure 4.2. The sequence of the

proposed local time-stepping algorithm continues as (see also figure 4.3):

• Step 1. Update magnetic field, fH , for the level 1 (Hn+ 1
2
), interface and level 2

(Hn+ 3
2
).

In case of level 1, p = 1 must be used, and for the level 2 and the interface, p = 3.

We need En dofs, which are all available.
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time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1       

(n+1)∆t1       

(n+3/2)∆t1       

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

Figure 4.2: Initial state, previously to the sequence of the LTS, for the three different
sets of the scenario of figure 4.1, (L=2).

• Step 2. Update electric field, fE, for the level 1 and interface (En+1).

In both cases p = 1 must be used. We need Hn+ 1
2

dofs. This information is

available in level 1, but has to be evaluated in the interface, by averaging Hn+ 3
2

and Hn− 1
2
, and in level 2, by interpolating Hn+ 1

2
= 2

3Hn+ 3
2

+ 1
3Hn− 3

2
.

• Step 3. Update magnetic field, fH , for the level 1 (Hn+ 3
2
).

Clearly, p = 1 must be used. En+1 is needed, in level 1 and interface, and available.

• Step 4. Update electric field, fE, for the level 1 (En+2), interface and level 2

(En+3).

In case of level 1, p = 1 must be used, and for the level 2 and the interface, p = 3.

We need Hn+ 3
2

dofs, which are available.

• Step 5. Update magnetic field, fH , for the level 1 and interface (Hn+ 5
2
).

In both cases p = 1 must be used. We need En+2 dofs. This information is

available in level 1, but has to be evaluated in the interface, averaging En+1 and

En+3, and in level 2, interpolating En+2 = 2
3En+3 + 1

3En.

• Step 6. Update electric field, fE, for the level 1 (En+3).

Obviously, p = 1 must be used. Hn+ 5
2

is needed, in level 1 and interface, and

available.

After this step, we are again in the state 0 for the next sequence. It should be noted

that we will need to bear in mind some previous steps of the dofs for interpolation

proposes.
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time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1
E     ∆t1  E        3∆t1 E    3∆t1 

(n+1/2)∆t1  H     

(n+1)∆t1       

(n+3/2)∆t1    H  H 

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H         1/3 

(n)∆t1
E  E         1/2 E  

(n+1/2)∆t1   ∆t1 H    ∆t1    

(n+1)∆t1 E  E         1/2     2/3 

(n+3/2)∆t1    H  H 

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

(a) Step 1. (b) Step 2.

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1
E    ∆t1 E    

(n+3/2)∆t1  H  H  H 

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1
E  E    

(n+3/2)∆t1    ∆t1 H   3∆t1 H   3∆t1 H 

(n+2)∆t1 E      

(n+5/2)∆t1       

(n+3)∆t1   E  E  

(c) Step 3. (d) Step 4.

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1 E  E    1/3  

(n+3/2)∆t1  H     1/2 H  H 

(n+2)∆t1
E   ∆t1   ∆t1   

(n+5/2)∆t1  H   1/2 H   2/3  

(n+3)∆t1   E  E  

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1 E  E      

(n+3/2)∆t1  H   H  H 

(n+2)∆t1
E      

(n+5/2)∆t1    ∆t1 H  H    

(n+3)∆t1 E  E  E  

(e) Step 5. (f) Step 6.

Figure 4.3: Sequence of the LTS algorithm for the scenario of figure 4.1, (L=2). Leap
Frog steps are drawn in solid lines, and interpolation in dashed format. The required
samples for an updating step appear inside a circle, and the computed samples in bold.
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4.1.2.3 The LFDG algorithm in PML regions

The extension of the leap-frog temporal integration scheme to the semi-discrete system of

(3.95) is perfectly straightforward. The auxiliary unknown field M must be evaluated at

tn = n∆t, as the electric field, and the auxiliary unknown field J , at tn+ 1
2

=
(
n+ 1

2

)
∆t,

as the magnetic field. In the same way, equation (3.95c) is tested at tn, as equation

(3.95b), and the equation (3.95a) at tn+ 1
2
, as (3.95d).

Making the approximations, the first-order time derivatives by central difference method,

the identity operation by the average approximation, and the dissipative terms of the

flux evaluation by the backward approximation, we can formulate the following fully

explicit algorithm for the PML medium,

Mm
n =A2M

m
n−1 + µ∆tA3H

m
n− 1

2

(4.11a)

Hm
n+ 1

2

=A11H
m
n− 1

2

+

βmA12

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

−MMm
n

]
(4.11b)

Jm
n+ 1

2

=A2J
m
n− 1

2

+ ε∆tA3E
m
n (4.11c)

Emn+1 =A11E
m
n +

βeA12

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn−1 − F+
νeE

m+
n−1 −MJm

n+ 1
2

]
(4.11d)

where,

A2 =
(

M +
∆t
2

MA2

)−1(
M− ∆t

2
MA2

)
(4.12a)

A3 =
(

M +
∆t
2

MA2

)−1

MA3 (4.12b)

A11 =
(

M +
∆t
2

MA1

)−1(
M− ∆t

2
MA1

)
(4.12c)

A12 =
(

M +
∆t
2

MA1

)−1

(4.12d)

The LTS procedure, described in the previous section, can be straightforwardly extended

to the PML updating equations (4.11). Notice that the unknown auxiliary fields are

completely explicit, and no information from adjacent elements is required, as far as the

M is updated after the electric field, and J after the magnetic field.



Chapter 4. Discontinuous Galerkin Methods in Time Domain 87

4.2 Eigenvalue Problem Setup of LFDG Algorithm

The Leap-Frog Discontinuous Galerkin (LFDG) algorithm is based on the system equa-

tion of (4.8), which has been rewritten bellow without sources and considering lossless

medium,

Hm
n+ 1

2

=Hm
n− 1

2

+
∆t
µ

M−1

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

]
(4.13a)

Emn+1 =Emn +
∆t
ε

M−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn − F+
νeE

m+
n

]
(4.13b)

Let us defined three column vectors, one with magnetic degrees of freedom (dofs) at

the instant time
(
n− 1

2

)
∆t, Hn− 1

2
=
[(
H1
n− 1

2

)T
, ...,

(
HM
n− 1

2

)T]T
, other with the elec-

tric dofs at the instant time n∆t, En =
[(
E1
n

)T
, ...,

(
EMn

)T ]T , and the last one with

both, magnetic and electric dofs, Un =
[(
Hn− 1

2

)T
, (En)T

]T
. Equations (4.13) can be

expressed in a compact manner, for the complete computational domain as,

Hn+ 1
2

=
(

IMQ +
∆t
µ

Mνh

)
Hn− 1

2
+

∆t
µ

MSκeEn (4.14a)

En+1 =
(

IMQ +
∆t
ε

Mνe

)
En +

∆t
ε

MSκhHn+ 1
2

(4.14b)

where IMQ is the MQ × MQ identity matrix, and Mνh, MSκe, Mνe and MSκh are

MQ×MQ matrices, which are the result of assembling the element-matrices of (4.13).

Inserting (4.14a) into (4.14b), the following fully explicit system is obtained,

Hn+ 1
2

=
(

IMQ +
∆t
µ

Mνh

)
Hn− 1

2
+

∆t
µ

MSκeEn (4.15a)

En+1 =

(
IMQ +

∆t
ε

Mνe +
(∆t)2

µε
MSκhMSκe

)
En +

∆t
ε

(
MSκh +

∆t
µ

MSκhMνh

)
Hn− 1

2

(4.15b)

which can be written in a compact manner as,

Un+1 = ALFDGUn (4.16)

where the matrix ALFDG is the Discontinuous Galerkin operator with the Leap-Frog

algorithm. It is the result of assembling all the element-matrices of (4.14) in a 2MQ×
2MQmatrix, following (4.15) form. MatrixALFDG depends on DG spatial discretization

features such as mesh size, order of the basis functions p and τ , and also on LF time

integration scheme and time-step ∆t.
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Considering time-harmonic plane wave of the form ej(ωt−k0r̂), where ω is the angular

frequency and k0 is the physical wavevector, the analytical relation between Un+1 and

Un is,

Un+1 = ejω∆tUn (4.17)

with the amplification factor ejω∆t.

In the same manner as in section 3.5.1 for the DG semi-discrete operator, periodic

boundary conditions (PBC) of equation (3.101) and figure 3.9, can be applied in order

to find a self-dependent linear system.

The exact wavenumber k0 is given by the well-know dispersion relation k0 = w
c , with

c = 1√
µε the speed of the wave. For the numerical scheme of (4.16), the amplification

factor can be evaluated solving the following eigenvalue problem,

ejω̃∆tUn = ALFDGU (4.18)

where we can find 2MQ eigenvalues (λmALFDG ,m = 1, ..., 2MQ). From the relation to

the analytical (ideal) solution for a physical plane wave propagating in a homogeneous

lossless medium (4.17), we can obtain the possibly complex-valued wavenumbers (k̃m =

k̃mreal + jk̃mimag,m = 1, ..., 2MQ) of the numerical operator as,

k̃m = j
ln
(
λmALFDG

)
c∆t

, m = 1, ..., 2MQ (4.19)

4.3 Stability Analysis of the LFDG Algorithm

The LFDG algorithm is a explicit and conditionally stable scheme. Some stability

appear in [60, 61, 63], where some stability conditions were derived. These analyses

establish a stability condition based on the maximum eigenvalue that can be supported

by the scheme. In order to avoid solving an eigenvalue problem for every element in a

specific problem, a maximum limit for the highest eigenvalue can be estimated to assure

stability. Thus, a ∆tmax can be chosen ’a priori’ based on geometrical properties of the

elements. Following this procedure, larger ∆t does not mean an unstable scheme, but

shorter ∆t assures stability of the scheme. For the first-order p = 1, DGTD with τ = 0

or centered flux, in an homogeneous medium, following condition must be satisfied by

all the m elements to assure stability,

c∆t
8 +
√

40
3

<
4Vm
∂Vm

(4.20)
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being Vm the element volume, and ∂Vm the element perimeter or the sum of the surface

of all faces of the element.

In case of τ 6= 0, that expressions are not valid and the stability condition becomes more

restricted and more difficult for a ’a priori’ estimation, [63].

A numerical stability analysis has been performed on the geometry of figure 3.8, where

PBCs have been applied on the contour. The maximum ∆t is numerically found for

different p orders and τ values. The strategy to find ∆tmax is to solve the eigenvalue

problem of (4.18) for different ∆t until a maximum value of ∆t is found that keeps all

the complex-valued k̃m with imaginary part negative, k̃mimag < 0,m = 1, ..., 2MQ.
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Figure 4.4: Numerical stability analysis of the LFDG algorithm for the geometry of
figure 3.8 with k0 = 2πx̂ and ∆ = 0.2. (a) Dependence of ∆tmax with τ parameter.

(b) Relative penalization of ∆tmax with τ parameter.

Figure 4.4 shows the results. It can be seen almost a linear dependence between the

∆tmax and the τ parameter. This relative relation does not depend on the order of

the basis functions p. Higher values of τ parameter require shorter ∆t values to keep

stability. For this reason, it is desirable to keep τ parameter as low as possible to not

penalize the stability condition, and high enough to eliminate spurious modes.

Table 4.2 shows some interesting values extracted from the results. The penalization for

using τ = 0.1 is about 9% in the ∆t. In case of τ = 1.0, upwind flux, the computation

cost would be increased by a factor of 2.25. The third column shows a estimation of

the increment in the number of time-steps due to the reduction of time-step when order

p is increased. This factor is about 1.6 from p = 1 to p = 2, and 2.5 from p = 1 to

p = 3. It is important to notice that the computational cost for different orders does not

depend only on ∆t. If higher order are used, the number of dofs also increases and so
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the computational cost per iteration. On the other hand, accuracy is better for higher

order p, so the number of elements can be reduced, what means increase h. For all

these reasons, a tradeoff is needed between the size of mesh, accuracy and order p. This

analysis, from computational cost point of view, appears in section 4.6.

Table 4.2: Results of the numerical stability analysis of the LFDG algorithm
∆tmax(p,τ=0)

∆tmax(p,τ=0.1)
∆tmax(p,τ=0)
∆tmax(p,τ=1)

∆tmax(p=1,τ=0.1)
∆tmax(p,τ=0.1)

p = 1 1.08 2.25 1.00

p = 2 1.09 2.30 1.62

p = 3 1.09 2.28 2.44

4.4 Numerical Results of the LFDG Eigenproblem

Figures 4.5 and 4.6 show the spectrum of the LFDG, for the geometry of figure 3.8 with

PBCs, and for different fluxes evaluation schemes and ∆t, respectively. In all cases,

following parameters have be used: k0 = 2πx̂, p = 2 and ∆ = 0.2.

The analysed cases that appear in figure 4.5 are similar to those of figure 3.10 solved

with the DG operator. It can be seen that the time integration scheme has impact in the

eigenvalue problem, which is slightly distorted, but the nature of the spectrum of the

LFDG algorithm is similar to the DG semi-discrete problem. Thus, same conclusions

related to non-physical solutions or spurious modes made for semi-discrete scheme in

section 3.5.2, can be extended for the LFDG algorithm.

Figure 4.6 shows the spectrum of the LFDG algorithm for ∆t close to ∆tmax. It can be

seen that the spectrum of LFDG is not symmetrical respect to the real part. In the DG

operator, for all the numerical wavenumbers i, defined as k̃i = k̃ireal + jk̃iimag, another j

wavenumber can be found which fulfilled the following condition, k̃j = −k̃ireal + jk̃iimag.

In the LFDG case, this condition is not exactly fulfilled, and it is more clear if ∆t

is close to ∆tmax and in the wavenumbers close to the instability (big value of
∣∣∣k̃mreal∣∣∣

and k̃mimag close to zero, even positive in case of an unstable situation). The reason

to this phenomenon is that we are using backward approximation of the penalization

terms, instead of central difference, to avoid that the scheme becomes implicit. Hence,

we are using delayed samples of the fields instead of updated samples, which drives to

a non-symmetrical eigenvalues. This fact makes the stability condition slightly more

restrictive.

Another feature of the spectrum is explained following. When ∆t increases, there are a

maximum and a minimum limits for the real part of the numerical wavenumbers. These

limits, together with negative imaginary part, define the stability region of the temporal
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Figure 4.5: Spectrum of the LFDG operator for a cubic domain (meshed with 24
tetrahedra) with PBC (k0 = 2πx̂, ∆ = 0.2 and p = 2). Upwind flux (upper left),

Centered flux (upper right), Partially penalized flux τ = 0.1 (lower).

scheme in the complex plane of k̃. If ∆t is larger than ∆tmax, are those wavenumbers

that produce the instability. The reason for this is similar that for the FDTD case, and

is intrinsic to the Leap-Frog scheme.

Let us consider the general equation,

dtU = cFs [U ] (4.21)
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(a) ∆t = 0.99∆tmax. (b) ∆t = 1.01∆tmax.

Figure 4.6: Results of the eigenvalue problem (spectrum of the LFDG operator) for
∆t close to ∆tmax, of the problem of figure 3.8 with PBCs, with τ = 0.4, k0 = 2πx̂,

p = 2 and ∆ = 0.2.

where we are looking for a solution to U , and Fs is a spatial operator. If we apply

Leap-Frog to the temporal derivative we obtain,

U
((
n+ 1

2

)
∆t
)
−U

((
n− 1

2

)
∆t
)

∆t
= cFs [U (n∆t)] (4.22)

Now we consider the monochromatic problem (ej(ωt−k0r̂)), obtaining the following result,

ejω
∆t
2 − e−jω

∆t
2

∆t
U (n∆t) = cFs [U (n∆t)] (4.23)

which can be reduced to the expression,

sin
(
ω

∆t
2

)
e−jk0r̂ =

c∆t
2j

Fs

[
e−jk0r̂

]
(4.24)

The result is that all the modes supported by Fs, (k̃m), must be under the stability

condition imposed by (4.24). Obtaining ω̃m complex-values with imaginary part greater

or equal to zero to keep stability,

ω̃m =
2

∆t
arcsin

(
−c∆t

2
k̃m
)

(4.25)

Notice that the problem of the equation (4.25), is equivalent to the eigenvalue problem

of (4.18). The arcsin operation fixes the maximum and minimum limits for the real part
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of the numerical wavevectors of figure 4.6, and, for larger ∆t, produces the instability.

4.5 Convergence of the LFDG Algorithm

The objective of this analysis is to compare the errors of the complete LFDG algorithm

(temporal integration plus spatial discretization), with the spatial DG operator alone,

which results appear in section 3.5.3. A comparison with FDTD has also been included.

A numerical convergence analysis has been performed on the problem of figure 3.8,

considering PBCs and k0 = 2πx̂. The eigenvalue problem of (4.18) is numerically

solved for different ∆ values. In all cases, the closest eigenvalue k̃m to k0 = |k0| is

chosen as the valid one, referred here as k̃0 = k̃real + jk̃imag. Numerical-dispersion,

numerical-dissipative and global errors can be computed as a function of k̃0 and k0. The

expressions (3.104) have been used to evaluate the different errors per wavelength.

The results of the analysis appear in figure 4.7. For the LFDG cases, τ = 0.1 and

∆t = 0.7∆tmax have been used. The expression to evaluate k̃0 for the FDTD case is the

very well-known numerical dispersion relation for this method written bellow [155],

k̃0 =
2
h

arcsin
(

h

c∆t
sin(

k0 c∆t
2

)
)

(4.26)

and the stability condition,

∆tmax =
h

c
√

3
(4.27)

The influence of ∆t has been considered in figure 4.8, where the analysis have been

carried out for different values of ∆t and p = 2.

Figures 4.7 and 4.8 call for the following remarks:

• The results show that the super-convergence property of the DG spatial operator

is kept up to a error limit where the convergence of the error becomes O
(
h2
)

due to the temporal integration method, which is a second order scheme. This

convergence rate does not depend upon order of the basis functions p or ∆t, and

it is the same convergence rate that is obtained by FDTD method.

• The reason to lose the super-convergence property is because of the dispersion

error introduced by the Leap-Frog integration scheme. Leap-Frog method is a

non-dissipative scheme so the dissipation error is not affected and it is exactly the

same as we obtained with the DG operator.
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Figure 4.7: Convergence of the dispersion (upper left), dissipation (upper right) and
L2-norm (lower) errors of the physical mode for the LFDG algorithm with τ = 0.1 and
∆t = 0.7∆tmax. Analogous curves for the DG operator and FDTD have been included.

• The limit between the zones where the error is dominated by the spatial discretiza-

tion and by the temporal integration methods, depends on ∆t, as is shown in figure

4.8. This limit can always be improved reducing ∆t, but the number of required

time-steps in a simulation, and so the computational cost, will grow.

• Although the different in accuracy between LFDG and FDTD looks very high in

figure 4.7, it is important to notice that the computational cost of the FDTD is

much lower. In section 4.6, FDTD and LFDG, with different order p, methods are

compared from computational cost point of view.

• The typical error value where real problems are solved is about 10−2, which cor-

responds to a resolution of the mesh, in case of the FDTD method, of about λ
28 .

It is important to notice that this accuracy value is in the zone dominated by the

spatial discretization error for the LFDG method, for p = 1, p = 2 and p = 3 and
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Figure 4.8: Influence of ∆t in the dispersion (upper left), dissipation (upper right)
and L2-norm (lower) errors of the LFDG algorithm with τ = 0.1 and p = 2. Analogous

curves for the DG operator have been included.

∆t = 0.7∆tmax. This characteristic is not expected to be fulfilled by higher orders

that p = 3.

• This analysis has been performed considering a plane wave traveling in an ho-

mogenous medium. The extension of all these conclusions to any general problem

must be done with care. In case of geometrical singularities, as corners or ver-

tex, the convergence rate considerably decreases. These problems must be dealt

by h-p techniques. It is important to notice that, in these cases, the temporal

integration error loses importance, and is the spatial discretization of the fields

which determines the accuracy of the numerical method. LFDG method, as it is

a FEM method, is a very efficient method for these cases, if a local time stepping

technique is used to permit the use of the very short ∆t, in dense regions, and

large ∆t in the rest.
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4.6 Computational Cost vs Accuracy Analysis

In this section we analyse the computational cost versus accuracy, in order to draw

an effective application of the proposed algorithm in real problems, and explore the

limitations and the efficiency of the method. The main tradeoff takes place between

the order of the basis functions p, the mesh resolution h, and accuracy, with the aim of

minimizing computational cost.

• Increasing p improves accuracy, but shorter ∆t for stability is required, and the

computational cost per element is higher.

• Increasing h improves accuracy, but shorter ∆t for stability for smaller elements

is required, and the number of elements increases.

Following parameters have been fixed in the analysis:

• Geometry and setup of the figure 3.8, considering PBCs and k0 = 2πx̂.

• τ = 0.1. The influence on the accuracy of the physical mode can be neglected, as

has been proven in section 3.5.3. Reducing its value decreases the dissipation of the

spurious modes, but increases computational cost (due to more restricted stability

condition, figure 4.4). This value has been proven sufficient in real problems.

• ∆t = 0.7∆tmax. This ratio of 0.7 between the maximum time-step supported by a

numerical scheme and the practical one, is a typical choice in time domain simu-

lations. This value avoids instabilities due to non-considered aspects as numerical

rounding errors.

In order to be able to compare the different configurations of the method, a computa-

tional cost per λ3 and pseg has been defined. The computational cost for one element m

for the LFDG algorithm, is proportional to the square of the number of basis functions

Q in that element,

Celement ∝ Q2 (4.28)

The cost for one iteration per λ3, will be approximately the number of elements per λ3

multiplied by the cost per element,

C1 iter

λ3
≈ Nelement

λ3
Celement (4.29)
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Finally, the following magnitude (CC) has been defined which will be proportional to

the global cost of the method,

Computational Cost
λ3pseg

∝ KNelement

λ3
Q2 1

∆t (pseg)
= CC (4.30)

being K a factor that has been considered equal to 1 for the FDTD case, and equal to 2

for the LFDG method. The reason is that the computational cost for the LFDG method

has been considered double of the FDTD due to the additional terms.

The CC magnitude has been computed for the results of the convergence analysis of

figure 4.7. FDTD method can be considered as a LFDG of order p = 0, where the

elements, instead of tetrahedral as is used for LFDG, are cube (Yee cell). The results

are shown in figure 4.9, where CC is in the X-axis and, accuracy is in the Y-axis, in the

upper side of the plot, and the resolution of the mesh, h, in the lower side.
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Figure 4.9: Computational cost of the LFDG algorithm for τ = 0.1, ∆t = 0.7∆tmax
and different order of the basis functions p. CC is in the X-axis and, accuracy is in the
Y-axis, in the upper side of the plot, and the resolution of the mesh, h, in the lower
side. Similar curve of the FDTD method has been included for comparison proposes.
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Table 4.3: Results of the computational cost analysis for a L2-norm accuracy of 10−2

per wavelength.
Q λ

h
Nelement

λ3
Nfunctions

λ3 c∆t 103 Celement ∝ C1iter
λ3 ∝ CC Gain

(
CC(p−1)
CC(p)

)
FDTD 3 28.5 23149 69447 14.1 9 208341 2600 –

p = 1 12 4.5 2187 26244 17.6 144 314928 9660 –

p = 2 30 1.9 165 4950 85.3 900 148500 3270 2.95

p = 3 60 1.1 32 1920 97.1 3600 115200 2260 1.45

The numerical values of the analysis, for the case where the L2-norm error is about

10−2 per wavelength, appear in table 4.3. It can be seen that the size of the elements

(λh) for higher values of order p, is bigger. This fact makes that the number of basis

functions per λ3 was lower for higher orders p. Beside, larger ∆t are allowed, because of

the increment in the size of the elements, even considering that the stability condition

is more restrictive for high orders p. Thus, the cost per element increases with p, but

the cost for iteration per λ3 and the overall computational cost decreases with order p.

This tendency is not extrapolated to very high accuracy (< 10−3), figure 4.9, where the

CC figure is practically the same for all orders p. The increment in the computational

cost per element is not compensated with a reduction in the number of elements and

the time-step. The global error, in the latter case, will be dominated by the temporal

integration method, which is just a second-order accurate, and the super-convergence

behavior of the error has been lost.

The same reason explains that, the gain for using p = 3 instead of p = 2 it is not as

high as the gain from p = 1 to p = 2. Thus, due to the lost of super-convergence of the

error of LFDG algorithm, using higher p orders that 3 will not be worthy in practical

problems. This is one limitation of the method, which avoids to take fully advantage of p

refinement techniques. In the other hand, the method has a comparable computational

cost to FDTD for practical applications, keeping most of the advantages of finite element

methods.

In summary, the results given in figure 4.9 and table 4.3 call for the following conclusions:

• The computational cost of the LFDG method is in the same order of magnitude of

the traditional FDTD method. So, it is expected that LFDG has all the advantages

of finite element methods as a similar computational cost of the FDTD method.

• Due to the limitations of using a second order accurate time integration scheme,

it will not be worthy to use basis functions of order p higher that 3.

• For the typical accuracy required in practical and real electromagnetic problems,

from 10−2 to 10−3 L2-norm error per wavelength, LFDG method is an efficient

algorithm. If very high accuracy would be required, it will be more efficient to
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use a time integration method of higher order of accuracy, in order to take more

advantage of the super-convergence property of the DG operator.

As a final comment, the information shown in this section is very valuable for the setup of

real simulations. Figure 4.9 allows to chose the most efficient, in terms of computational

cost, element size h conforming the mesh, establishing a ’a priori’ target accuracy. Once

the mesh has been generated, again figure 4.9, allows to choose the appropriate ’a priori’

p order in each element, depending on its size and required accuracy. The main limitation

of this ’a priori’ h-p refinement strategy is that figure 4.9 is only valid for a plane wave

traveling in an homogenous medium. Keeping accuracy under control when there are

geometrical singularities is beyond the scope of this work.





Chapter 5

Validation and Application of

Leap Frog Discontinuous Galerkin

Method

The Leap-Frog Discontinuous Galerkin (LFDG) method has implemented to solve the 3-

D Maxwell’s equations. The implementation considers different electromagnetic sources,

as ports or plane waves, and simulates different materials and boundary conditions.

Capabilities and details of the electromagnetic solver appear in appendix A.

In this chapter, some electromagnetic (EM) problem results, computed with LFDG

method, have been collected. Some of the results have been compared with measure-

ments and others with results obtained with other computational methods. Different

kind of EM problems have been addressed in order to validate and demonstrate the at-

tractive properties of the LFDG method, which combines all the goods of Time Domain

and Finite Element methods. Robustness, accuracy and stability have been proven with

very resonant EM problems as microwave filters. Some antenna problems have been

used to validate and prove the versatility and efficiency of the method. Accuracy has

been demonstrated with the computation of the RADAR cross-section (RCS) of low-

observable (LO) targets. Electrically medium and large structures responses under high

intensity radiated fields (HIRF) have been computed, including a complete aircraft sim-

ulation, showing the efficiency and scalability of the method. Finally, the treatment of

anisotropic material is validated.

101
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Table 5.1: Number of elements (M) for each set of basis functions for the DMCWF.
GxRy stand for x order for the gradient space, y order for the rotational space

G1R1 G1R2 G2R2 G2R3 G3R3 Total

M 38988 2258 804 2734 15102 59886

dofs 935712 90320 48240 246600 1927320 3248192

Table 5.2: Local time stepping level distribution for DMCWF problem.
L1 L2 L3 L4

M 7 13101 22556 24222

∆t (psg) 6.96 10−3 20.88 10−3 62.64 10−3 187.92 10−3

5.1 Microwave Filters

Waveguide filters, an especially challenging type of problem for time-domain techniques,

are traditionally solved by methods in FD, such as FEM, integral-equation methods,

or analytical methods such as the mode matching. Due to the strong resonances that

these structures present, two main features are required to deal with them in TD. One

is the stability of the method, since very long simulations are necessary. The other

is its accuracy, to maintain the coherence of the electromagnetic field throughout the

structure. In this work, we use waveguide filters to provide proof of the robustness and

accuracy of the LFDG method.

5.1.1 PEC Microwave Filter

A dual-mode circular waveguide filter (DMCWF) is analyzed in this section, which has

been analyzed in detail in [156] and measurement are available. The filter is composed

of a circular cavity resonator that includes the input and output slots of a DMCWF.

Due to the symmetries of the structure, vertical perfect magnetic conductor-wall and

horizontal perfect electric conductor-wall symmetry were considered in the numerical

simulations, as is depicted in the simulation setup of the figure 5.1.

It is important to note that a dense discretization of the slots is critical for accurate

results. This forces to chose small time step in this elements to satisfied stability con-

dition. The used of curvilinear 2nd-order tetrahedral permits to have high geometry

discretization accuracy in the cylindrical waveguide, without reducing element size. The

basis function used in each tetrahedral element have been selected depending on its size.

Table 5.1 gives the number of elements for each set of basis functions, while Table 5.2

gives the number of elements and time step for each level of the LTS algorithm.

Three observables have been considered:
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Figure 5.1: Dual-mode circular waveguide filter dimensions and problem setup (Ez
results overimpose for both fluxes).

1. A field probe inside the rectangular waveguide to record field evolution in TD.

Figure 5.2 shows different results for partially penalized (τ = 0.025) and centered

flux cases. In the case of centered flux, and due to the spurious modes, Ey and

Ex are not null. No noticeable difference is appreciated between centered and

penalized for Ez.

2. The filter response in terms of the S21 parameter. No remarkable differences

were found between centered/upwind or LF/RK4 schemes. For instance, figure

5.3 shows the comparison between measurement, centered, and partial penalized

(τ = 0.025) computed with LF and local time stepping, with excellent agreement.

No influence on the S21 parameter appears to exist due to spurious modes, reaching

excellent agreement in all cases.

3. The evolution of the energy inside the structure. Figure 5.4 shows the curves for

the two cases referred above. It can be seen that the energy needs considerable

time to leave the filter, since the structure is very resonant. This leads to long

physical simulation times to achieve accurate results, as are listed in table 5.3. In

case of centered, there are more energy inside the structure because of the energy

of the spurious modes. However, this does not have influence to find good and

accurate results for the S21 parameter, the main problem is that some deviations

are found in the computed near fields. This is the typical behavior (no problems

for far fields computations or average parameter as impedance or S parameters)

of spurious modes, not only in DG methods, but in general FEM as well.
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Figure 5.2: Dual-mode circular waveguide filter near fields computation.

Table 5.3 summarizes the computational requirements of the different simulations per-

formed. It should be noted that the 2nd-order LF scheme, combined with a 5-level LTS

provide the algorithm about 8 times faster than do non-LTS schemes for this numerical

case.
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Figure 5.3: Dual-mode circular waveguide filter response. Measured and computed
data comparison.
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Figure 5.4: Evolution of the energy inside the dual-mode circular waveguide filter.

Table 5.3: Computational requirements of the different cases (for a 8 processors AMD
OPTERON dual core 1.8GHz.). The computed physical time has been 35 nsec. Fluxes:

C=centered, U=upwind, P=penalized with τ = 0.025.
Flux Scheme ∆t (3) steps(1) memory CPU(2)

C RK4 24.5 - 24.5 1428572 2.0 GB 121.2 h

U RK4 24.1 - 24.1 1452282 4.1 GB 213.3 h

C LF 19.6 - 19.6 1785715 2.0 GB 63.5 h

P LF 19.2 - 19.2 1822917 4.1 GB 118.5 h

C LF,5L-LTS 6.96 - 187.9 186250 2.1 GB 8.9 h

P LF,5L-LTS 6.81 - 183.9 190320 4.3 GB 15.5 h

(1) Number of steps for the maximum ∆t in the problem.
(3) Minimum-Maximum values in units of 10−15 sec.
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Figure 5.5: Single resonator composed of a rectangular cavity loaded by a dielectric
cylindrical puck. Simulation setup.

5.1.2 Microwave Filter with Dielectric Material

In this case, we will show is a microwave filter with a dielectric material. The filter is

composed of a single resonator based on a rectangular cavity loaded by a dielectric cylin-

drical puck. This structure has been reported in [157] and measurements are available.

Again, the rectangular cavity is excited by two rectangular slots centered on opposite

lateral faces. The resonator is chosen with a high permittivity (εr = 29) (see setup in

figure 5.5). The TE10 mode is excited in the input port, by impressing surface magnetic

currents with its profile. The backwards propagated mode is absorbed by the PML,

and the forward-propagated one is the incident wave used to excite the structure. The

reflected wave required to evaluate the S21 parameter is computed by projecting the

computed electric fields with the TE10 profile at the output port. The energy (figure

5.6) takes a long time to leave the cavity due to the presence of the dielectric puck, which

makes the structure very resonant. Excellent agreement in the S21 parameter between

simulation and the measurements is found in figure 5.7. Only the results for a partially

penalized (τ = 0.025) flux are shown (similar results can be found with the centered

flux, since, as with the previous filter, spurious modes have no noticeable effect on the

transmission coefficient).
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Figure 5.6: Evolution of the energy inside the single resonator filter.

The computed physical time, as appears in Table 5.4, was 180 nsec, which corresponds

to 1980 cycles of the lowest frequency and 2880 of the highest frequency under analysis.

2nd-order leapfrog with local time stepping has been used with no instability problems.

Due to the marked differences in the size of the elements, up to 6 levels in the LTS have

been used, and the ratio between the shortest and largest time step was 729. Again,

depending on the size of the elements, a different order p of the basis functions has been

chosen.

Table 5.4: Single resonator simulation description.
flux partial penalized (τ = 0.025)

time scheme 2nd-order Leap Frog (6-LTS)

number of elements 362706

number of d.o.f. 18505352

computed physical time 180.0 nsec.

LTS level 1 2 3 4 5 6

number of elements 2 26 390 177768 94036 90484

number of elements(%) 5.5 · 10−4 7.2 · 10−3 0.11 49.0 25.9 24.9

∆t (ps) 6.0 · 10−4 1.8 · 10−3 5.4 · 10−3 1.6 · 10−2 4.8 · 10−2 1.5 · 10−1

number of steps 297977292 99325764 33108588 11036196 3678732 1226244

order basis functions (G0,R1) (G1,R1) (G1,R2) (G2,R2) (G2,R3) (G3,R3)

number of elements 0 298113 9302 3535 27577 24177

number of elements(%) 0 82.2 2.6 1.0 7.6 6.7

5.2 Antennas

Time Domain (TD) methods for antenna simulation become very efficient for wide-

band response computations. Some essential characteristics are required to simulate

wideband antennas in TD: modelling of antenna ports for accurately computation of

antenna impedance, truncation of the computational domain and efficient treatment
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Figure 5.7: S21 response of the single resonator filter. Measured and computed data
comparison.

of high elements size contrast due to geometry details. LFDG method fulfills with

these requirements. The traditional methods for antenna excitations, coaxial port and

delta-gap, can be easily modeled in Discontinuous Galerkin methods. The Conformal

Uniaxial Perfect Matched layer (C-UMPL), formulated in section 3.4, can reduce the

computational domains to the minimum. Finally, the application of local time stepping

algorithm with the use of arbitrary order p in each element, can efficiently deal with

the high contrast in the element size, obtaining a good accuracy level. Two numerical

examples are presented to validate, show the applicability, and evaluate the efficiency of

the approach.

5.2.1 Wideband Bicone Antenna

A wideband bicone antenna has been designed making used of LFDG method. The

antenna has been designed, manufactured and measured, and will be used as a sensor in

Low Level Swept Field (LLSF) measurements. The main objective of a LLSF test is to

evaluate the transfer function between external and internal fields in a structure. This

is a typical test in the aerospace sector, to assess the shielding effectiveness inside the

fuselage, in the equipment bays. After the calibration of the external field without the

structure, a sample of the field inside the bay have to be taken in order to evaluate the
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Figure 5.8: Wideband bicone antenna.

transfer function. The main requirements for an antenna for this kind of applications

are:

• The radiation patterns should be as much omnidirectional as possible, along all

the frequency band. The antenna radiation pattern will be significantly modified

by the structure itself, omnidirectionality will reduce measurement variations.

• Fuselage attenuation measurements require small antennas in order to fit properly

inside any kind of cavity where a final equipment could be installed.

• Good adaptation. VSWR bellow 1.7:1 is the target. This figure is important to

have good sensibility and reduce the influence of the structure.

• Wide frequency band. The objective is to cover as much as possible the considered

frequency spectrum against the High Intensity Radiated Fields (HIRF) hazard. In

our case, the target has been from 1.5 GHz to 18.0 GHz.

The chosen antenna kind to fulfilled with all the above requirements is the bicone an-

tenna. The final mounted design appears in figure 5.8.

Figure 5.9 shows the simulation setup. Following points have been considered in the

electromagnetic modelling of the antenna:

• The antenna is meshed with quadratic (2nd) tetrahedral. This is an important

point since the geometry has revolution symmetry and all the surface are curved
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or doubly-curved. Curvilinear elements significantly improve the spatial discretiza-

tion.

• The order of basis functions p to expand the electric and magnetic fields has been

chosen depending on the element size. The objective is to maintain an appropriate

accuracy level along the computational domain with reasonable simulation times.

• Conformal Uniaxial Perfect Matched Layer (C-UPML) has been used to truncate

the computation space. This technique is shown to be reflectionless for any angle

of incidence, polarization and frequency. The conformity is used to reduce the

buffer space minimizing time and memory requirements of each simulation.

• Local Time Stepping technique has been used. Different elements size and different

order of the basis functions need different time steps to fulfilled with the stability

condition of the time integration scheme. Instead of using the smallest time step,

different time step has been chosen which reduces enormously the simulation time.

• The antenna has been excited with a coaxial waveguide where the S11 parameter

and input impedance have been computed.

• The radiation patterns for different frequencies has been evaluated computing the

near-to-far field transformation of the electric and magnetic fields.

• Two symmetric planes has been used in order to reduce by a factor of four the

computational requirements.

The first TEM coaxial mode is weakly injected in the coaxial port, through the flux

terms. This is done introducing surface electric and magnetic current density sources of

the form,

M s = n̂p ×Einc (5.1a)

Js =− n̂p ×H inc (5.1b)

where n̂p is the unit vector normal to the port, in the direction of propagation of the

injected TEM mode. The incidence fields, expressed in cylindrical coordinates ρ and φ,

take the form of the first TEM mode in a coaxial waveguide,

Einc =
V inc (t)
ln (b/a)

1
ρ
ρ̂ (5.2a)

H inc =
V inc (t)
η ln (b/a)

1
ρ
φ̂ (5.2b)

being a and b, the inner and outer radii of the concentric conductors, respectively, with

the space between them filled with a dielectric of impedance η =
√

µ
ε . We assume that
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Figure 5.9: Simulation setup of the wideband bicone antenna.

the outer conductor is grounded, V (t) = 0, and the inner conductor is held at time

dependent voltage V (t) = V inc (t) + V scat (t), which includes the incidence
(
V inc

)
and

the scattered
(
V scat

)
waves. Notice that, we can evaluate the antenna impedance and

S11 parameter from the computation of V scat.

The coaxial port is truncated with a absorbing boundary condition of first order (or

impedance boundary condition), since the coaxial waveguide is operated in the frequency

range that ensures that only the lowest mode can propagate (single-mode operation).

This fact does not introduce any limitation and avoid the use of PML to truncate the

coaxial port.

The coaxial port is excited with a Gaussian pulse time signal
(
V inc

)
, with 12 dB band-

width at 20 GHz. The problem has been simulated until a physical time of 2.5 nsec.

Some screen shots of the simulation appear in figure 5.10.

The computed and measured S11 and the computed input impedances of the final an-

tenna are shown in figure 5.11, where excellent agreement between both have been found.
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Figure 5.10: Screen shots of the simulation of the wideband bicone antenna.

The computed radiation patterns in the symmetrical plane are shown in figure 5.12.

5.2.2 Modelling of Antenna Installation

In this section we use the LFDG method to analyze the expected performance of an

antenna installed in the fin leading edge of an aircraft. The proposed geometry is shown

figure 5.13, which has been simulated installed on an infinite ground plane.

The structure is excited with a delta-gap. This source model forces an excitation voltage

(V inc (t)) between two points. The incident electric field takes a time dependent value

but constant in space (Einc = V inc(t)
∆ l̂g where ∆ is the gap width and l̂g the unit vector
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Figure 5.11: S11 and input impedance of the wideband bicone antenna. Measurement
results of the S11 have been included for validation proposes.
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Figure 5.12: Radiation patterns of the wideband bicone antenna. The curves show
antenna gain for different frequencies in dBi.
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Figure 5.13: Antenna installed on an infinite ground plane.
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Figure 5.14: Delta-gap source model.

following the gap orientation) over the feed gap, and zero elsewhere. The incident

magnetic field is zero in the whole computational domain.

The delta-gap source, in DG methods, can be weakly injected introducing a surface

magnetic current density in the the flux terms,

M s = n̂g ×Einc =
V inc (t)

∆

(
n̂g × l̂g

)
(5.3)

where n̂g is the unit vector normal to the gap.

Figure 5.14 shows a scheme of the resulting sources, where, for this particular case, we

have applied the delta-gap over a PEC surface. This fact makes that the the scattered

voltage (V scat (t)) is zero. Thus, we just need to compute the current flowing through

the delta-gap to evaluate the the antenna impedance.

The computed input impedance and the radiation patterns (theta vs phi diagrams) for

the antenna installed on an infinite ground plane are shown in figures 5.15 and 5.16. This

kind of antennas are typically used in VHF and UHF frequency bands. In UHF band

the antenna is naturally matched to 50Ω. In case of VHF band, typical VSWR figures

could be achieved making used of a matching network. This is the traditional approach

to reduce the antenna size for on-board aircraft antennas. Concerning the radiation
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Figure 5.15: Input impedance with the antenna installed on an infinite ground plane.

patterns, due to the loading structure on the top of the radiating element, some energy

will be radiated in the cross-polar component, which slightly reduces antenna gain in

the co-polar component. This effect is more important in UHF band.

The proposed integration concept of this antenna in a fin leading edge of an aircraft

is depicted in figure 5.17. The first approach to estimate the antenna performance of

the antenna installed in the fin leading edge, is to considered just a piece of tail, as is

depicted in simulation setup of figure 5.18. Antenna impedance, and radiation patterns

for two frequencies (132 MHz (VHF) and 312 MHz (UHF)) have been computed and the

results, theta vs phi radiation patterns, 3-D radiation patterns and impedance, appear

in figures 5.19, 5.20 and 5.21.

We find relatively low degradation of the adaptation parameter. However, important

differences, due to the masking effect of the fin, are found in the radiation patterns.

5.3 Estimation of the RCS of LO Targets

To validate and test the accuracy of the presented method, we consider a low observable

(LO) target in different configurations known as NASA Almond. This is an Electro-

magnetic Code Consortium benchmark target for validation proposes, defined in [158],

where some measurements for a perfect electric conductor (PEC) case, are reported.
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(a) VHF (132 MHz) co-polar. (b) VHF (132 MHz) cross-polar.

(c) UHF (312 MHz) co-polar. (d) UHF (312 MHz) cross-polar.

Figure 5.16: Theta vs phi radiation patterns with the antenna installed on an infinite
ground plane.

Figure 5.17: Antenna integration concept.
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Figure 5.18: Installed antenna simulation setup.
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Figure 5.19: Input impedance with the antenna installed on the fin leading edge. The
results of the antenna installed on an infinite ground plane have been included.
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(a) Co-polar. (b) Cross-polar.

(c) Co-polar 3-D radiation pattern.

Figure 5.20: Radiation patterns for the antenna installed in the fin leading edge at
132 MHz.

Due to the tiny RADAR cross-section (RCS) of this LO target, high accuracy is a must

to deal with these kind of EM problems. Thus, this structure are typically solved by

Method of Moments (MoM) in FD, which is one of the methods more accurate in CEM.

LFDG algorithm has been used to compute the RCS of the almond and compared to

results obtained with MoM Multilevel Fast Multipole Method (MoM-MLFMM). The

used MoM-MLFMM code has been HPTESP-MAT, which is a Cassidian Electromag-

netic Solver based on MoM-MLFMM on surface integral equations know as Combined

Current and Charge Integral Equations (CCCIE) [159, 160], able to deal with composed

metallic and homogenous dielectric structures.
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(a) Co-polar. (b) Cross-polar.

(c) Co-polar 3-D radiation pattern.

Figure 5.21: Radiation patterns for the antenna installed in the fin leading edge at
132 MHz.

The geometrical definition of the PEC structure appears bellow,

Half ellipsoid: for − 0.416667 < t < 0.0 and − π < ψ < π
x = d t,

y = 0.193333 d
(√

1−
(

t
0.416667

)2) cosψ,

z = 0.06444 d
(√

1−
(

t
0.416667

)2) sinψ,

(5.4a)

Half elliptic ogive: for − 0.0 < t < 0.583333 and − π < ψ < π
x = d t,

y = 4.833450 d
(√

1−
(

t
2.083350

)2 − 0.96
)

cosψ,

z = 1.611148 d
(√

1−
(

t
2.083350

)2 − 0.96
)

sinψ,

(5.4b)

where d = 2.5 m, is the length of the structure. Notice that this is a complete double

curvature geometry, where we can find both, smooth and high curves zones, and also a
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    µ r = 1.0 σm = 1.42 104 
 

coating thickness: 30 mm

Figure 5.22: Geometry under analysis for the NASA Almond.

singular point, the ogive vertex. The right discretization of the curve surfaces (curvilinear

2nd-order tetrahedral), and also a care discretization of the fields close to the vertex (low

value of h) are critical to obtain accurate results. Figure 5.22 shows the geometry under

analysis. Apart from the PEC case, two different coated material cases has been studied,

a perfect dielectric and a RADAR Absorber Material (RAM).

Figure 5.23 gives some details of the simulation setup. Firstly, a total-field region is

defined in a way to minimize the size of the computational domain. Secondly, the

scattered-field region is created. Finally, the conformal PML layer is defined to close

the computational domain. The surface, interface between total-field and scattered-field

regions, is used to excited the problem in a weak way, through the flux terms, as a Huy-

gen’s source. The same surface is used to compute the near-to-far field transformation

and calculate the RCS.

The problem is excited with an horizontal polarized plane wave, impinging on the almond

at the vertex. The resulting copolar bi-static RCS at 1 GHz, computed with LFDG and

compared the results with MoM, are shown in figure 5.24 for the three cases analyzed.

Excellent agreement are found in all cases. The monostatic RCS from 500 MHz to 2

GHz is shown in figure 5.25. Excellent agreement is found for PEC and C2 (RAM

material) cases. Minor differences are detected for the C1 (perfect dielectric) case. It is

important to notice that this is a challenging case for MoM, where the required number

of iterations to solve iteratively the MoM linear system is quite high, and the number of

unknowns can not be very high in order to have a solution in a reasonable computation

cost. Thus, these minor differences are mainly due to a slightly lack of accuracy in the

MoM results.
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Figure 5.23: Simulation setup for the NASA Almond. Starting with the unbounded
domain (upper left), a total-field region (with a conformal Huygen’s surface) is defined
(upper right). This surface is used for the near to far field transformation operation.
A scattered-field region is created (lower right) and, finally, the PML layer (lower left).

Concerning computational cost in this EM problem, the CPU time required for the

LFDG method, is about 10 times the computational cost of MoM for one frequency.

This means that, LFDG is worthy to be used if more than 10 frequency are going to

be computed. In our case the monostatic RCS has been computed for 301 frequencies

obtaining, obviously, less computational cost for LFDG 1. In the same way, for the

bi-static RCS computation, just for one frequency, MoM requires less CPU time than

LFDG.

5.4 High Intensity Radiated Fields

The adverse effects caused by high-intensity radiated fields (HIRF) in any electronic

device or in a very complex system, such as an aircraft, is a challenging topic from the

standpoint of computational electromagnetics (CEM). The typical approach to tackle

this Electromagnetic Compatibility (EMC) problem is based mainly on testing. The

development of efficient algorithms, able to deal with electrically large structures, and

accurate methods, capable of estimating transfer functions between incident EM fields

and internal fields, or induced currents in bundles, has recently been attracting a great

deal of interest in the aerospace industry.
1Because LFDG is a TD method, all frequencies can be solved in just one simulation. MoM requires

one simulation (matrix computation and linear system resolution) for each frequency.
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Figure 5.24: Bi-static Radar Cross Sections of the NASA almond at 1 GHz. Com-
parison results between LFDG and MoM.

In this section the capability of the presented method to deal with very complex electro-

magnetic problems in an accurate way is proved. Firstly in a medium size 3-D object,

where a wideband frequency response, considering a plane wave illumination, is com-

puted. Then, a electrically large problem is analyzed in order to assess the scalability

of the method.

5.4.1 Medium size 3-D Object

This validation geometry has been taken from a test-case proposed under the HIRF-

SE project [161] for cross-validation with measurements of several numerical solvers.

It consists on a 600 × 500 × 300 mm brass box, with the front face open (see figure

5.26), with a 30 mm wide flange around the edge. The box has two holes for N-type

connectors on the top, labeled A and B in figure 5.26(a). Between these holes, a curved-

wire is connected (see figure 5.26(b)), made up of three semi-circles and two vertical

straight sections. Its endings are soldered into the N-Type bulkhead connectors A and

B.

The box is illuminated perpendicularly to the open face using a linearly polarized plane

wave, with electric vertical polarization, in the frequency band 1 to 6 GHz. The power
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Figure 5.25: Monostatic Radar Cross Sections of the NASA Almond. Comparison
results between LFDG and MoM.

received in the load of 50Ω at port A is taken for comparison (port B is grounded through

a 50Ω load).

The results found with the LFDG algorithm are shown in figure 5.27. They are compared

to measurements and FDTD simulations computed with the parallel UGRFDTD package

[162]. Excellent agreement is found for LFDG and measurements.

5.4.2 Aircraft Simulation Case

This problem consists of a 3-D numerical test case based on a modified version of

Evektor’s EV55 metallic aircraft (see figure 5.28), also taken as a workbench for cross-

validation of several simulators under the HIRF-SE project [161]. The aircraft model

consists on a PEC skin together with a generic part of the cabling. The electrical dimen-

sions at 1 GHz are 53.7×47.4×17.1λ. The PEC shell is considered with zero thickness,

and the cable is modeled as a PEC cylinder of radius 3 cm. Some apertures exist in the

aircraft shell, cockpit, and fuselage windows, which permit the electromagnetic energy
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Figure 5.26: Setup of the medium size 3-D object.

to couple into the airframe, where there are simplified models for some of the systems

and cavities. The aircraft is illuminated with a plane wave coming at 45o below its nose,

with the magnetic field in the horizontal plane (see figure 5.28(a)).

Three different kind of probes have been chosen for comparison, for being representative

of different coupling scenarios (see figure 5.28(b)):

1. O1. The electric field at a surface test-point on top of the cockpit hidden from

the illumination coming from underneath.

2. O2. The magnetic field in a point inside the airframe more weakly coupled to the

illumination, and more susceptible to internal resonances.
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Figure 5.27: Reception aperture of the medium size 3D object, the reception aperture
being the relation between the power received at port A, and the power density of the
plane wave illuminating the box. Measurements are compared with results computed

with LFDG and FDTD methods.

3. O3. current at the termination of one of the grounded cables.

All these quantities have been found in TD and computed in FD as transfer functions

(normalized to the incident field).

The simulation setup is shown in figure 5.29. A total-field region is defined directly

backed by the conformal PML interface. Thus, the scattered-field region is just the

PML, with the subsequent computational saving. The surface at the total-field/PML

interface layer is used to introduced the excitation as a Huygen’s source, through the

flux terms, as described in section 3.2.

The plane-wave source uses a Gaussian pulse time signal, with 14 dB bandwidth at 1

GHz. The problem has been simulated up to a physical time of 1.0 µs. Some screen

shots of the simulation appear in figure 5.30, and results are shown in figure 5.31, in

comparison with those found with FDTD (computed with UGRFDTD package [162]),

reflecting very good agreement.

In case of the FDTD simulation, the cell size has been constant of 12 mm ( λ25 at 1

GHz). In both cases, the expected accuracy 2 is about 10−2 per wavelength at 1 GHz.
2Defining the accuracy as the L2-norm error per wavelength for a plane wave traveling in free space:∣∣∣e−jk0λ − e−jk̃0λ∣∣∣, λ being the wavelength, k0 the analytical wavenumber, and k̃0 the numerical one (see

sections 3.5.3, 4.5 and 4.6.)
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(a) External view and overall dimensions.
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Figure 5.28: External and internal geometry of the aircraft-simulation case. There is
a cable modeled as a cylinder. There are some apertures in the aircraft shell, cockpit,

and fuselage windows, and also different structures and cavities inside the airframe.



Chapter 5. Validation and Application of LFDG Method 127

 

 

  

unbounded domain 
conformal  

total-field region 

Huygen's 

surface 

conformal 

PML layer 

Figure 5.29: Simulation setup for the aircraft-simulation case. Starting with the
unbounded domain (upper left), a total-field region (with a conformal Huygen’s surface)
is defined (upper right). Then, from this surface, the conformal PML layer can be
created (lower). It should be noted that the scattered-field region is collapsed to the

conformal Huygen’s surface and is not needed, saving computational space.
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Figure 5.30: Screen shots of the aircraft-simulation case.
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Figure 5.31: Computed transfer functions for the aircraft-simulation case. Compari-
son of results between LFDG and FDTD. Upper left: O1, upper right: O2 and lower:

O3

Details about the order of the basis functions used in this particular simulation appear

in table 5.5, and about the LTS, in table 5.6. A comparison between LFDG and FDTD

computational details is made in Table 5.7.

Table 5.5: Number of elements (M) for each set of basis functions for the Aircraft Sim-
ulation Case. GxRy stand for x order for the gradient space, y order for the rotational

space
G1R1 G1R2 G2R2 G2R3 G3R3 Total

M 96572 6018789 2729857 59 0 8845279

M (%) 1.09 68.05 30.86 0.00 0.00 100.00

dofs 3764112 300664960 204819600 6570 0 509255242

dofs (%) 0.74 59.04 40.22 0.00 0.00 100.00

Table 5.6: Local time-stepping level distribution for the Aircraft Simulation Case.
L1 INTERFACE (L1/L2) L2 INTERFACE (L1/L2) L3

M 880 980 125602 217506 8500311

M (%) 0.01 0.01 1.42 2.46 96.10

∆t (ps) 1.59 4.77 4.77 14.32 14.32

For this case, the memory and CPU time is about one order of magnitude larger for

LFDG than for FDTD. In case of FDTD, we use single precision variables since it is an
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Table 5.7: FDTD vs LFDG Comparison.
Method M(106)1 dofs(106)2 min. ∆t max. ∆t steps3 memory CPU4 M(106)/sg5

LFDG 8.845 509.3 1.59 ps 14.32 ps 69837 256.6 GB 114 h 52.2

FDTD 703.704 4394.8 18.00 ps 18.00 ps 55556 36.1 GB 14 h 638.4
1 Number of elements (M) are 2nd order tetrahedra for LFDG and Yee-cells for FDTD.
2 Double precision (8 bytes per dof) for LFDG. Single precision (4 bytes per dof) for FDTD.
3 Number of steps for the max. ∆t. The computed physical time has been 1.0 µs.
4 CPU time corresponds to 10 processors Intel Xeon X5680 6 cores, 3.33Ghz.

Hybrid Open MP/MPI implementations are used in both cases.
5 Updated mega-elements per second for the highest LTS level.

Different orders p have been used for each cell (table 5.5) for LFDG.

advantage of this method, the use of double precision does not usually improve FDTD

performance. However, double precision is recommended and used in case of LFDG,

where we are using high-order functions, LTS and PML, double-precision variables are

required to maintain accuracy and avoid instability due to rounding-off errors. Concern-

ing computational cost, three remarks are due:

• The simplicity of the FDTD algorithm makes it easier for the compilers to obtain

faster codes. Techniques such as vectorization and the better use of the cache

memory are key for speeding up FDTD algorithm. These techniques are not so

effective for DGTD.

• Local time stepping, the presence of PML and the use of different order p elements,

make not only the workload prediction more difficult, but the workload balance as

well to optimize the parallelization. In one complete iteration of the highest LTS

level, the workload is not constant across the mesh in the different steps of the

LTS algorithm. In case of FDTD, the workload balance can be made in an almost

perfect way.

• The mesh used in the FDTD computation is the simplest one, a uniform structured

mesh. Thus, quite high discretization errors are expected because of the staircasing

effect. Moreover, the FDTD mesh parses out what is irrelevant compared to cell

size, which can be an advantage, if it is also electrically irrelevant, or not. In

this case, for instance, a non-uniform mesh had been used, with a smaller cell

(2.0 mm), the CPU time would have been very similar to that achieved with

LFDG. In the case of LFDG, where curvilinear 2nd-order tetrahedra have been

used, the discretization error is very small. Furthermore, the FEM mesh resolved

every detail present in the geometrical model. This fact, concerning accuracy, it

is clearly shown in the first case presented in the previous test-case, where we

compare with measurements.
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Figure 5.32: Bi-static RCS of an isotropic/anisotropic sphere (D = 1.2λ and λ = 1.0
m). LFDG results are compared to those appearing in [163], and computed with Ansoft

HFSS.

5.5 Anisotropic Materials

In this section we validate the formulation developed in section 3.3, where the flux

terms and the semi-discrete scheme for the anisotropic material case where derived.

For comparison, we have used two simple problems of scattering from a non–magnetic

dielectric sphere (µr = 1): the first one isotropic with εr = 3.0, and the second one

anisotropic with

¯̄εXY Zr =


3.0 0.0 0.0

0.0 3.0 0.0

0.0 0.0 4.0

 (5.5)

The sphere is illuminated with a x-polarized plane wave, and the bi-static Radar Cross

Section (RCS) is computed at a frequency for which the sphere diameter is D = 1.2λ,

with λ being the wavelength. For reference, results from [163], computed with a Finite

Element-Boundary Integral-Multilevel Fast Multipole Algorithm, and also computed

with Ansoft HFSS commercial software are used. Figure 5.32 shows a good agreement

between results found by all methods. The maximum difference found in the anisotropic

case compared to HFSS results has been of 0.35 dB.



Chapter 6

Conclusion and Further Work

As a whole, this thesis pursued two global aims. The first one was to explore the poten-

tial applicability of the Discontinuous Galerkin spatial discretization to solve Maxwell’s

equations in Time Domain. The second one, was to propose, implement and apply an

promising alternative of this method named Leap-Frog Discontinuous Galerkin (LFDG).

To summarise the resulting accomplishments, the scientific contributions of this work

are thus highlighted in the following section. Then, a list of future research topics in

this area is presented.

6.1 Scientific Contributions

The previous chapters have presented the contributions to science after an in-depth and

detailed description of the techniques involved. These achievements are abbreviated

next to recapitulate and to give an encompassing view of the research undertaken:

1. Formulation of the semi-discrete Discontinuous Galerkin spatial dis-

cretization scheme. The formulation has been developed in a general frame-

work which unifies different fluxes evaluation schemes successfully applied to this

method. The formulation includes the treatment of the common boundary con-

ditions, anisotropic materials, and absorbing boundary conditions (ABC), the so-

called first-order Silver-Müller ABC and the conformal uniaxial perfect matched

layer.

2. Analysis of the Dicontinuous Galerkin seme-discrete scheme. The dis-

persion and dissipation of the numerical method have been studied. The topic of

the spurious modes has been reviewed. Additionally, the convergence rates of the
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dispersion and dissipation relationships of the semi-discrete space operator have

been estimated.

3. Development of the Leap-Frog Dicontinuous Galerkin algorithm. The

well-known Leap-Frog (LF) time integration method have been apply to the DG

semi-discrete scheme, obtaining the LFDG algorithm. In this context, a local time

stepping strategy has been successfully developed to overcome the critical limita-

tion imposed by the stability condition of the LF explicit temporal discretization

scheme.

4. Analysis of the Leap-Frog Dicontinuous Galerkin algorithm. Following a

similar approach to that used for the semi-discrete scheme, the LFDG algorithm

has been studied, considering topics like stability, spurious and global convergence

of the method. The convergence rates have been compared to the obtained with

the DG space operator alone. The limitations of the LFDG algorithm have been

assessed. A final analysis of the computational cost versus accuracy has been

performed, and compared to the FDTD method.

5. Parallel implementation of the Leap-Frog Dicontinuous Galerkin algo-

rithm. Taking advantage of the parallel nature of LFDG, this algorithm has been

implemented on hybrid OMP-MPI programming technique. This two level of par-

allelization fits perfectly in the modern computers (a number of medium/large

shared memory multi-element nodes, interconnected with Infiniband, Myrinet or

Gigabit).

6. Validation and application of the Leap-Frog Dicontinuous Galerkin al-

gorithm. The LFDG algorithm has been validated with microwave filters, an-

tennas and scattering electromagnetic problems, comparing the results with mea-

surements and other numerical techniques. The method has been applied to real

engineering problems, showing some important properties of the method, such as

robustness, accuracy, stability, versatility, efficiency, scalability and accuracy.

6.2 Further Work

Although many different computation electromagnetic methods have been deeply and

widely developed to deal with most of the practical engineering problems, there is still

gaps for which new techniques shall be explored. In this thesis, a method that combines

the goods of Finite Element and Time Domain methods is implemented from scratch.

To the discretion of the author, the following is a list of the more immediate research

topics in this area. However, this list is not exhaustive:
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1. Developing further solver capabilities. LFDG technique has many similarities

to FDTD. In fact, FDTD can be seen as LFDG method of order zero. Hence, most

of the capabilities fully assessed and validated in FDTD solvers can be adapted

to LFDG. Some of the most useful are, dispersive and/or anisotropic thin layer

models, dispersive materials treatment, lumped circuit elements or thin wires.

2. Improvement the temporal integration convergence rate. Although LFDG

easily permits the selection, in each particular element, of the order of the basis

functions for the spatial discretization of electromagnetic fileds, the main limita-

tion of the method is the poor convergence rate of the temporal integration scheme.

This fact imposes a limit in the use of p refinement techniques. The temporal inte-

gration algorithm should be improved to allow the selection, element-by-element,

of the convergence rate of the temporal discretization.

3. Development of hp-adaptability techniques. The electromagnetic problems

addressed in this work show the importance of the use of hp-adaptability. The

development of efficient hp-adaptability techniques, in time domain simulations,

will allow the application of the method in a more automatic and blind way. To

this aim, a close integration of the mesher in the electromagnetic solver is a critical

point.

4. Multi-physics simulation. The use of unstructured tetrahedral meshes makes

easier multi-physics coupling with other numerical models that also use this kind

of meshes.





Appendix A

SEMBA: Numerical Tool for

Electromagnetic Fields

Computation

A electromagnetic computational tool, based upon the Leap Frog Discontinuos Galerkin

(LFDG) algorithm, has been developed. The tool’s name is SEMBA. Some implemen-

tations details and capabilities are described in this appendix.

A.1 Description of SEMBA

The implementation of the LFDG algorithm explained in chapter 4 is called SEMBA

LFDG, hereafter referred as SEMBA. Some high level details about the implementation

are listed bellow.

• Self-supporting Fortran 95 code. SEMBA does not make use of any external

library, except MPI.

• Hybrid OMP-MPI programming technique, well suited for the new kind of com-

puters: A number of medium/large shared memory multi-element nodes, intercon-

nected with Infiniband, Myrinet or Gigabit.

• Highly optimized code. In algorithm and computing resources (memory & CPU).

Matrices which are independent of the element geometry are shared. Incomplete

matrices are compressed.

• Most of the code uses double variables. This fact permits to keep under control

the accuracy and avoid late-time instabilities.
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2nd Order Elements 

Figure A.1: Geometrical discretization.

A.2 Geometrical Discretization.

SEMBA’s geometrical discretization is based on first and second order curvilinear tetra-

hedra. The use of curvilinear elements offers two main advantages. One is the accurate

representation of curved boundaries and geometry, what, in many real applications, in-

troduces a dramatic improvement in the accuracy of the numerical approximation. The

other is the increment in the efficiency of the method, since curvilinear elements reduce

the number of the elements to accurately discretize a geometry, and the obtained mesh

has bigger elements, allowing the use of longer time-step in the temporal integration.

Another important point is the capability to generate complex meshes with this kind

of elements. This requirement is fulfilled by most of the commercial CAD tools. In our

case, GiD [120] is employed for geometrical modelling, meshing and some visualization

of the results.

A.3 Mesh Preprocessing.

In order to increase the efficiency of the computations and implement some capabilities,

before starting a numerical simulation SEMBA performs some preprocessing tasks. First

of all, the mesh is distributed among the different parallel processes. Secondly, the order

of the basis functions for each element is chosen, according to the required accuracy.

Finally, the elements are organized in different sets, as is required by the Local Time

Stepping algorithm.
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Figure A.2: Distribution of the mesh among the MPI processes.

A.3.1 Mesh Distribution.

One of the key advantage of Discontinuous Galerkin methods is its simplicity for the

parallelization in memory distributed hardware architecture, making use of the Mes-

sage Passing Interface (MPI) standard. The mesh is distributed among the M available

processes as is depicted in figure A.2. This is the first level of parallelization of the

SEMBA solver. Just from the very beginning, in the reading of the mesh, the algorithm

is fully parallelized among all MPI processes, obtaining a very high scalability. The

required geometrical information for each processes is, obviously, its own geometry, and

topological adjacent elements of the neighbor processes. This additional information

will be used to computed the flux coming from these adjacent elements to its own com-

putational domain. Obviously, some information will be necessary to be interchanged

between neighbor processes in the numerical simulation process.
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A.3.2 Selection of the Basis Function.

A h-p refinement heuristic strategy has been developed to choose the size of the mesh,

and the order of the basis function in each tetrahedron. The objective is to assure

an accuracy level, minimizing the computational cost. The required accuracy could

be different across the computational domain, which is an input for the electromagnetic

simulation process. The selection of the mesh size has to be made in the mesh generation

process, since there are a optimum element size that minimizes computational cost for

a required accuracy. The level of accuracy, therefore, defines the optimum element size

according to the results shown in sections 4.5 and 4.6. In real meshes, the elements

size will vary along the computational domain, and the accuracy is finally adjusted with

the selection of the order p. The current implementation of SEMBA uses this ’a priori’

approach of the exploitation of h-p refinement techniques mixing different elements sizes

(h) and orders (p).

Once the mesh is generated, SEMBA selects element-by-element the order of the basis

functions, depending mainly on its size and the required accuracy in the region where

the element is located. The aim is to employ higher order basis for bigger tetrahedra,

and lower for smaller ones. SEMBA combines gradient spaces of reduced order p − 1,

with rotational spaces of complete order p. The choice is based on similar curves as

those appearing in figure 4.9.

It is important to notice that smaller elements need shorter time steps, but if lower

orders are used in these elements, the stability condition is relaxed. In the same way,

longer time steps can be used in bigger elements combined with higher orders. The

combination and mixing different orders of the basis functions depending on element

size, makes more homogeneous the time step between all the elements, reducing the

number of levels required for the local time stepping algorithm.

This step is carried out in each MPI process, with its own geometry. A graphical example

is depicted in figure A.3.

A.3.3 LTS Level Classification.

The local time stepping strategy described in section 4.1.2.2 is implemented in SEMBA.

The method requires to classify all the elements, according to its maximum time-step

(∆tmmax) for the Leap Frog temporal integration method, in several levels, L. The inter-

faces between levels shall be identify, since they need a special treatment in the numerical

simulation process. In each level l, different time-step will be used in the simulation,
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Figure A.3: Selection of the expansion function. RxGy stand for x order for the
rotational space, y order for the gradient space.
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Figure A.4: Example of a distribution of ∆tmmax in a real problem. The choice of
∆tmin and the time-steps for the different levels (L = 4), have been included in the
plot. The estimated average time-step has been 88.5 psg, compare to minimum ∆tmmax

(10.5 psg), a gain of about 8 is expected due to the application of LTS.

3(l−1) ∆t1, being ∆t1 the time-step for the first level. This technique can provide dra-

matic savings in the CPU-time in real problems, where unstructured meshes contain

very small and distorted elements. Figure A.4 shows the distribution of the maximum

time-step for all the elements in a real problem. The right choice of ∆t1 is not the

minimum ∆tmmax, this value is tuned to obtain the maximum average time-step.

Finally, let us point out that the proposed LTS strategy requires linear interpolation to

find the updated samples in the interfaces between LTS levels. This operation is not

exactly an average approximation, and second order accuracy is slightly lost in these

zones. This fact has a locally effect in the stability of the scheme. The solution to this
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level 1          interface       level 2 

Figure A.5: Example of a LTS level classification with L = 2.

problem is to penalized the stability condition just for the elements in the interfaces of

the LTS levels by a factor (typically 0.8, [63, 94]). This fact introduces some complexity

in the right selection of the ∆t1, which is the parameter that fixes the interfaces.

Although, some information, related to the levels assigned to adjacent elements, must

be shared between MPI processes, this step can be carried out in each MPI process,

with its own geometry. An example with L = 2 is shown in figure A.5.

A.4 Numerical Simulation.

Once we have distributed the mesh among the processors, the basis functions in each

element has been selected, and the LTS level classification has been established, we can

start to prepare the numerical simulation and perform the computation. We following

give some details and capabilities of the electromagnetic numerical simulation process.

A.4.1 Materials and Boundary Conditions

Concerning the material modelling capabilities of electromagnetic problems, SEMBA

includes the following possibilities:

• Isotropic dielectric and magnetic materials, with the relative electric permittivity

(εr) and magnetic permeability (µr) properties.

• Isotropic lossy electric and magnetic materials, with electric conductivity (σe) and

magnetic conductivity (σm) properties.
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• Anisotropic materials. Instead of using the isotropic values, the anisotropic be-

havior is described with the tensors: ¯̄εr, ¯̄µr, ¯̄σe and ¯̄σm.

• Perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundary

conditions. This conditions can be used to model geometry, infinite ground planes

or symmetric planes.

• Conformal Uniaxial Perfect Match Layer (C-UPML). The conformity of the PML

geometry is defined making use of canonical geometries: planes, spheres, cylinders

and toroids.

• First-order Impedance Boundary Condition (IBC). This boundary condition can

effectively truncate TEM ports as coaxial, avoiding the use of PML. It can also be

used to truncate the space, resulting the so-called first-order Silver-Müller absorb-

ing boundary condition.

The treatment of the boundary conditions and material properties are included in the

element matrices stored in memory. Following this approach, the time-marching is a

very simple algorithm based only on vector-matrices products element-by-element.

A.4.2 Electromagnetic Sources

SEMBA makes use of the flux terms to excite the structures under analysis, following

the Huygen’s principle. The sources are surface currents distributions which weakly

inject the incident fields. This approach can be seen as the traditional incident wave

source condition or Total-Field/Scatter-Field technique.

Let us consider that, inside a total-field zone (TFZ), a known wave is propagating, while

outside it (scattered-field zone (SFZ)) the field is null. If Einc, H inc denote the wave

fields at each point of the TFZ/SFZ interface (see figure A.6), the flux across the face

of an element m in the TFZ (with this face lying on the TFZ/SFZ interface) needs to

consider the equivalent surface currents,

M s =n̂m ×Einc

Js =− n̂m ×H inc

and if m is in the scattered field zone

M s =− n̂m ×Einc

Js =n̂m ×H inc
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Figure A.6: Total field/scattered field decomposition. 2-D representation.

This technique can be applied to incorporate any incident field. The different sources

implemented in SEMBA are listed bellow:

• Plane wave illumination.

• Coaxial port.

• TE10 rectangular waveguide port.

• Delta-gap port.

A.4.3 General Time-Marching Algorithm

The time-marching algorithm is based on the local time stepping method described in

section 4.1.2.2. The different steps are summarized bellow for L = 2, completed with the

required MPI communications. The algorithm can be easily generalized to any problem

with L levels.

• Step 1.1. MPI Communication of the electric dofs: level 1.

• Step 1.2. Update magnetic dofs: level 1, interface and level 2.

• Step 2.1. MPI Communication of the electric dofs: level 1, interface and level 2.

• Step 2.2. Update electric dofs: level 1 and interface.

• Step 3.1. MPI Communication of the electric dofs: level 1 and interface.

• Step 3.2. Update magnetic dofs: level 1.
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Figure A.7: MPI Communication and updating schemes. The communication for the
MPI 1 process, takes place between MPI 2 and MPI 3 processes. MPI 1 and MPI 4
are not in contact, so do not require any communication. Inside each MPI processes,

different threads update the LFDG algorithm to a group of elements.

• Step 4.1. MPI Communication of the magnetic dofs: level 1.

• Step 4.2. Update electric dofs: level 1, interface and level 2.

• Step 5.1. MPI Communication of the electric dofs: level 1, interface and level 2.

• Step 5.2. Update magnetic dofs: level 1 and interface.

• Step 6.1. MPI Communication of the magnetic dofs: level 1 and interface.

• Step 6.2. Update electric dofs: level 1.

Previously to each step of the LTS scheme, a communication (MPI) of the fields (mag-

netic in case of electric field updating, and viceversa), between the adjacent MPI pro-

cesses, has to be performed. The amount of data to be exchanged will be different for

each LTS step (even no data), depending on the required samples, since not all elements

are updated in each LTS step. Each updating is computed by N multiple threads (Open

MP) having a shared memory parallelization. This point corresponds the second level

of parallelization of SEMBA. The Open MP parallelization is made at element level,

that means each thread takes care of updating a group of elements. The result is a

hybrid MPI/Open MP algorithm. The parallelization strategy, considering both levels,

is depicted in figure A.7.



Appendix A. SEMBA: Numerical Tool for Electromagnetic Fields Computation 144

A.5 Postprocessing.

SEMBA implements the following postprocessing capabilities:

• Near-to-far field transformation for radiation patterns and RADAR cross-section

(RCS) computation.

• S-parameter computation in ports (coaxial, TE10 rectangular waveguide and Delta

gap).

• Impedance computation in ports.

• Current and voltage computation.

• Time domain field probes.

• Frequency domain field probes.

• Surface density fields.

It important to notice that all postprocessing are performed during the simulation stage.

The main advantages of doing it in that way are: (i) avoid to save a lot of information in

the hard disk and (ii) keeping the parallelization of the algorithm, since none of the pro-

cess know the whole geometry of the problem, the postprocessing itself is parallelized.
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